魏文胜团队发布新一代线粒体碱基编辑器助力建立疾病动物模型
核基因组突变是多种疾病的根源,而线粒体作为细胞内具有半自主功能的细胞器,拥有独立的基因组,其基因组突变同样与多种遗传疾病密切相关。线粒体疾病通常累及多种组织器官,其中最为人熟知的包括Leigh综合征和LHON(Leber遗传性视神经病变)。Leigh综合征的症状包括发育迟缓、肌张力减退、运动和呼吸障碍等,而LHON则表现为视力丧失、中央暗点和视神经萎缩等问题。根据MITOMAP的统计,目前已验证的线粒体致病性突变有97个,其中点突变占比高达95%。然而,由于缺乏有效的点突变相关线粒体疾病小鼠模型,线粒体疾病的研究与治疗开发受到了严重制约。
早期的小鼠模型主要通过化学诱导或遗传工程构建[1],但这些方法操作复杂、成本高昂且对突变的精准控制较差,仅成功建立了极少数模型。近年来,研究人员成功开发了线粒体碱基编辑工具,可以对线粒体DNA实现C到T和A到G的编辑,例如DdCBEs和TALEDs。这些工具基于双链DNA脱氨酶DddA蛋白[2, 3]。虽然已有研究者尝试将这些工具应用于小鼠模型的构建,但其编辑效率尚不足以模拟人类线粒体疾病中高突变负荷的特征[4, 5]。此外,研究表明DdCBEs可能引发大量核基因组脱靶效应,这种非TALE依赖性的脱靶主要源于DddA蛋白的自组装以及其与CTCF的相互作用[6]。因此,基于DddA的线粒体碱基编辑工具在应用中面临核基因组脱靶的风险,难以直接建立线粒体突变与疾病表型之间的因果联系。
针对这一挑战,魏文胜课题组之前开发了mitoBEs,这是一种结合切口酶与单链DNA脱氨酶的新型线粒体碱基编辑工具,能够实现线粒体DNA的C到T和A到G编辑。与DdCBEs和TALEDs相比,mitoBEs展现出卓越的链特异性和显著降低的脱靶效应。得益于其双向碱基编辑能力,mitoBEs能够对大约87%的致病线粒体突变进行精确建模[7]。
2025年1月22日,北京大学基因功能研究与操控全国重点实验室魏文胜课题组在Nature杂志在线发表了题为“Precise modelling of mitochondrial diseases using optimized mitoBEs”的研究论文。该研究报道了通过优化后的mitoBEs实现高效且精准地构建线粒体疾病小鼠模型的成果。利用优化版mitoBEs,研究团队成功建立了具有高突变频率的小鼠模型,这些模型表现出了与疾病相关的典型表型。此外,通过杂交实验,还获得了突变负荷达到100%以及仅含单碱基突变的精确小鼠模型。
为准确建立突变与疾病表型之间的直接联系,消除碱基编辑工具的脱靶效应尤为重要。在利用mitoBEs进行建模时,需要将RNA编码的mitoBEs注射到小鼠受精卵中。因此,该研究首先对RNA编码的mitoBEs系统的脱靶效应进行了全面评估。结果表明,RNA编码的mitoABE存在广泛的转录组脱靶效应,而mitoCBE则表现出一定程度的依赖于APOBEC1蛋白的线粒体基因组脱靶效应。为了提高mitoBEs的精准性,该研究重点优化了脱氨酶。针对mitoABE,通过突变筛选发现,TadA8e-V106W-V28F能够显著降低转录组脱靶至背景水平(图1)。针对mitoCBE,筛选了多种现有的胞嘧啶脱氨酶,并发现TadA衍生的胞嘧啶脱氨酶CBE6d在线粒体基因组上表现出的脱靶效应接近背景水平。基于这些优化成果,研究团队将改进后的mitoBEs命名为mitoBEs v2,包括mitoABE v2和mitoCBE v2(图1)。此外,该研究还系统性地评估了优化前后mitoBEs在核基因组上的脱靶效应,结果显示,无论是优化前还是优化后的mitoBEs,均未在核基因组上引发明显的脱靶效应,从而验证了其在基因编辑中的安全性和可靠性。
图1优化mitoBEs的编辑精准性
通过将85个人类致病性线粒体DNA点突变与小鼠线粒体基因组进行同源性比对,研究确定了70个可编辑位点。进一步的细胞水平初步筛选成功实现了其中68个位点的编辑。比较发现,由环状RNA(circRNA)编码的mitoBEs v2相比于mRNA编码的工具,具有更高的编辑效率。因此,研究团队将circRNA编码的mitoBEs v2注射至小鼠胚胎并进行移植,结果显示mitoBEs v2在多种F0代小鼠模型中均实现了较高的编辑效率,其中mt-Nd5A12784G F0小鼠模型的突变频率高达82%(图2)。此外,该研究系统性评估了F0代小鼠在线粒体基因组和核基因组中的脱靶效应,结果表明,在整个基因组范围内未检测到脱靶效应。这一发现表明,mitoBEs v2能够构建遗传背景干净的线粒体疾病小鼠模型。更重要的是,线粒体基因组的编辑结果在小鼠不同组织中表现出广泛且持久的存在(图2),并且能够通过母系遗传稳定传递。通过进一步杂交实验,研究成功获得了目标位点编辑效率达到100%以及仅含目标位点突变的mt-Nd5A12784G小鼠模型。
图2 mitoBEs v2高效构建线粒体疾病小鼠模型,编辑结果广泛且持久稳定于多组织
mt-Atp6T8591C和mt-Nd5A12784G分别对应人类线粒体致病突变m.T9191C和m.A13379G,并分别导致Leigh综合征和LHON。研究团队对突变率较高的F0代小鼠进行了疾病表型评估,结果显示,mt-Atp6T8591C小鼠表现出显著的心脏功能障碍,与Leigh综合征的临床特征相符;mt-Nd5A12784G小鼠则表现出类似LHON的视力障碍(图3)。此外,研究还通过调整TALE结合位点,成功构建了仅含目标位点编辑的单碱基突变mt-Nd5A12784G小鼠模型。这些研究结果充分证明了mitoBE v2在创建线粒体疾病小鼠模型方面的高效性和精准性,为深入探索线粒体疾病的致病机制及开发新型治疗策略提供了重要工具。
图3小鼠模型呈现出相应的线粒体疾病表型
北京大学博士后伊宗裔为该论文的共同通讯作者,昌平实验室博士后张小雪为论文的第一作者,张雪、任纪武、李佳怡、魏晓旭和于莹博士也为该研究做出了重要贡献。本研究得到了昌平实验室、国家自然科学基金、北大-清华生命科学联合中心及中国博士后科学基金的资助。
文章链接: https://www.nature.com/articles/s41586-024-08469-8
参考文献:
1. Stewart, J.B., Current progress with mammalian models of mitochondrial DNA disease. Journal of Inherited Metabolic Disease, 2021.44(2).
2. Mok, B.Y., et al., A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature, 2020.583(7817).
3. Cho, S.I., et al., Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell, 2022.185(10).
4. Silva-Pinheiro, P., et al., A library of base editors for the precise ablation of all protein-coding genes in the mouse mitochondrial genome. Nature Biomedical Engineering, 2023.7(5).
5. Cho, S.I., et al., Engineering TALE-linked deaminases to facilitate precision adenine base editing in mitochondrial DNA. Cell, 2024.187(1).
6. Lei, Z.X., et al., Mitochondrial base editor induces substantial nuclear off-target mutations. Nature, 2022.606(7915).
7. Yi, Z.Y., et al., Strand-selective base editing of human mitochondrial DNA using mitoBEs. Nature Biotechnology, 2024.42(3).
- 白洋团队联合多位顶尖科学家系统解析根际微生物组调控水稻分蘖的功能与机制2025.04.24
- 瞿礼嘉/钟声课题组发现植物传粉过程中“未雨绸缪”的“两步授粉”备份新机制,为作物逆境下的育性优化提供新思路2025.04.15
- 曾虎课题组应邀撰写综述:空间组学技术的研究进展2025.04.06
- 张迪课题组受邀综述蛋白质L-乳酰化的研究进展2025.04.04
- 苏晓东课题组揭示短序列锚定元件AE在DNA与蛋白质结合中的重要作用2025.03.31
- 魏文胜团队实现人类肿瘤免疫调控网络的单碱基精度解析2025.03.21
- 白洋团队构建全球首个作物根际"细菌+病毒"基因组数据库2025.03.13
- 季雄团队揭示RNA聚合酶亚基RPB7偶联磷酸酶CTDP1稳定Pol II并介导转录再起始2025.03.05
- 何爱彬团队利用全景单细胞组蛋白修饰实现胚胎发育谱系追踪2025.03.04
- 赵进东课题组揭示蓝细菌藻胆体与光系统II结合的新分子机制2025.02.17
- 高歌课题组提出面向大规模异质性空间转录组学切片的表征与解析新方法2025.02.12
- 周岳课题组揭示拟南芥雄性生殖细胞发育过程中染色质三维结构的动态变化过程及其重要作用2025.02.12
- 魏文胜团队发布新一代线粒体碱基编辑器助力建立疾病动物模型2025.01.23
- 贺新强课题组揭示木质部管状分子发育的microRNA调控网络2025.01.19
- 周岳课题组在Genome Biology发文揭示了拟南芥中启动子空间调控模式和喷泉结构形成机制2025.01.02
- 高歌课题组提出人类转录调控元件建模与相关非编码变异功能解析方法2025.01.02
- 魏文胜团队利用碱基编辑器筛选绘制DNA损伤应答功能元件图谱2024.12.16
- 秦跟基课题组揭示弱光下种子萌发调控新机制2024.12.05
- 刘启昆课题组开发了全新的植物细胞谱系追踪工具2024.11.26
- 周岳课题组揭示植物首个三维基因组结构蛋白及其调控机制2024.11.22
- 周岳课题组揭示植物特有的PWWP结构域蛋白调控基因表达的分子机制2024.11.22
- 国家重点实验室陈雪梅教授获得2024年度“求是杰出科学家奖”2024.11.08
- 秦跟基课题组应邀撰写品牌综述“Tansley insight”总结TCP转录因子在细胞器、细胞和器官命运决定中的重要功能2024.10.28
- 郑晓峰课组揭示USP1-ATF4-CD98hc调控ENKTL淋巴瘤患者耐药的新机制2024.09.30
- 肖俊宇课题组揭示IgM–CD5L复合物的分子机制2024.09.30
- 陆剑课题组揭示密码子使用偏好性对翻译调控的影响2024.09.30
- 魏文胜团队实现蛋白质组中丝氨酸、苏氨酸和酪氨酸位点的功能解析2024.09.24
- 王继纵/邓兴旺课题组合作解析植物光敏色素phyB光信号转导的机制2024.09.24
- 刘君/杨雪瑞课题组合作揭示m6A-cenRNA调控癌细胞着丝粒稳态的机制2024.09.23
- 伊成器教授荣获2024年“科学探索奖”2024.08.29
- 王伟课题组报道蛋白酶体调控SG稳态抵御高温胁迫的新机制2024.08.22
- 肖俊宇团队阐明IgE 高亲和力受体FcεRI 复合物的组装机制2024.08.22
- 朱玉贤院士团队发布首个棉花基因组完整图谱,阐述棉族独特折叠胚胎形成的分子与演化机制2024.08.16
- 李晴课题组报道了滞后链核小体组装和冈崎片段成熟的协同机制2024.08.13
- 魏文胜团队报道非脱氨酶依赖的嘧啶碱基编辑器TBE2024.08.03
- 李晴研究组与合作者报道真核DNA复制体介导的亲本组蛋白表观遗传信息继承新机制2024.08.02
- 张迪课题组与合作者共同报道区分蛋白质乳酰化修饰同分异构体的新方法2024.07.22
- 国际遗传工程和生物技术中心(ICGEB)总干事Lawrence Banks教授一行访问陆剑课题组2024.06.26
- 郭强课题组与合作者揭示Synaptophysin调控突触小泡生成与功能的机制2024.06.06
- 2024年全国科技周开放活动2024.05.28
- 李磊课题组解析miR408平衡植物生长和抗旱的分子机制2024.05.16
- 李晟课题组与合作者研究揭示华北地区华北豹栖息地及其景观连通性现状2024.05.06
- 陆剑课题组揭示黑腹果蝇演化历史和环境适应机制2024.04.19
- 李川昀课题组在WIRES RNA发表从头起源新基因起源特征的综述2024.04.16
- 秦跟基课题通过构建拟南芥十二重突变体揭示雌蕊顶端命运决定的分子机制2024.04.08
- 李川昀课题组与合作者揭示结构变异编码人脑特异发育的新机制2024.04.07
- 肖俊宇课题组阐明磷酸化酶激酶PhK的组装与激活机制2024.04.01
- 陆剑课题组研发SIRSVIDE模型解析病毒进化动态2024.03.28
- 陈雪梅课题组鉴定了一个新的非典型帽子修饰RNA(NAD-capped RNA)脱帽酶,揭示了NAD+帽子修饰参与基因表达调控的新机制2024.03.18
- 祝贺瞿礼嘉教授成果入选 2023 年度“中国生命科学十大进展”2024.03.08
- 李晴、高宁及合作者揭示亲本组蛋白在DNA复制叉回收的关键分子机制2024.03.07
- 伊成器课题组开发升级版RNA编辑技术RESTART v32024.03.06
- 魏文胜课题组揭示肿瘤逃逸非HLA-I类分子依赖多效型T细胞杀伤的新机制2024.02.21
- 秦跟基课题组与合作者揭示水稻花药适时开裂的分子机制2024.02.21
- 陆剑课题组发表综述探讨新冠病毒刺突蛋白的功能演化2024.02.20
- 李磊课题组与合作者揭示巨胞饮的转录调控机制2024.02.19
- 焦雨铃课题组与合作者完成首个多细胞植物染色体的部分设计与合成2024.01.27
- 伊成器和合作者报道m1A修饰酶在调控造血干细胞衰老过程中的新机制2024.01.18
- 陆剑课题组与合作者共同揭示猴痘病毒蛋白质序列和密码子使用的分子演化规律2023.12.15
- 陆剑课题组与合作者发表综述总结动物microRNA调控的趋同和趋异演化2023.11.24
- 魏文胜团队实现人类蛋白质组中赖氨酸位点的功能解码2023.11.23
- 张蔚课题组受邀撰写综述揭示蝶翅花纹的演化创新模式2023.11.22
- 郭强课题组和杨竞课题组合作阐释粒细胞(granulocytes)细胞核分叶的全新分子机制2023.11.21
- 王忆平课题组在创建稳定高效联合固氮系统方面取得了突破性进展2023.11.20
- 高歌课题组提出跨平台、多模态空间组学比对与整合方法2023.11.13
- LEAPER 2.0在非人灵长类动物和人源化小鼠中实现了高效精准的长时RNA编辑2023.10.25
- 李川昀、刘颖团队建立单碱基分辨率鉴定DNA 6mA修饰的新方法,揭示真核生物6mA促进转录的新机制2023.10.23
- 又一教科书级的重大突破!瞿礼嘉/钟声课题组揭示植物通过有性生殖实现远缘杂交的新机制2023.10.08
- 王忆平研究团队与合作者成功创制2.0版多聚蛋白型固氮酶系统,为实现真核系统自主固氮迈进坚实的一步2023.09.18
- 秦跟基课题组揭示高温下植物种子前身胚珠命运的保护机制2023.09.15
- 焦雨铃课题组与合作者发现蛋白相分离调控植物茎分生组织活性2023.09.12
- 罗述金团队古DNA研究揭示中国是虎演化史上基因大熔炉2023.09.01
- 王伟课题组及合作者报道酚酸类化感物质通过促进相变抑制翻译从而调控物种间竞争的新机制2023.08.29
- 国家重点研发计划“病原变异及其跨物种传播的回溯和演进方法体系构建”项目推进会暨专家研讨会在北京大学成功召开2023.08.18
- 王继纵课题组与邓兴旺课题组合作揭示植物远红光受体phyA高度光敏感性的分子机制2023.07.28
- 赵进东、高宁、翁羽翔课题组合作揭示了CpcL藻胆体能量传递机制2023.07.10
- 郑晓峰课题组揭示乙酰转移酶ESCO2通过稳定Cohesin复合物促进NHEJ修复的作用和机制2023.07.10
- 伊成器课题组综述mRNA上非m6A修饰的调控与功能2023.07.04
- 郑晓峰课题组揭示SUMO化修饰通过调控液-液相分离来影响NHEJ修复效率和肿瘤细胞耐药的分子机制2023.07.03
- 郭强课题组开发适用于组织样品原位结构研究的方法2023.06.16
- 张蔚课题组综述以山地蝶类为体系开展生物多样性研究的进展2023.06.12
- 陆剑课题组与合作者揭示新冠病毒密码子演化规律并提出mRNA疫苗优化策略2023.06.05
- 张蔚课题组和合作者开发基于深度学习的基因渐渗推断方法2023.06.01
- 高歌课题组提出基因丢失鉴定新方法2023.05.29
- 2023年全国科技周开放活动2023.05.28
- 魏文胜课题组报道新型线粒体碱基编辑器2023.05.23
- 刘启昆课题组解析DDR4-ISWI染色质重塑复合体调控基因弹性表达的分子机制2023.05.23
- 张蔚课题组揭示动物不完美拟态的生态学意义2023.05.18
- 肖俊宇研究组发现恶性疟原虫演化出多种“劫持”IgM的分子机制2023.05.09
- 白书农课题组与合作者组织众筹,构建研究植物生活周期核心形态建成过程的模式植物2023.04.25
- 白书农课题组对于有关葫芦科CRC在单性花发育中调控功能的研究论文发表观点评论2023.04.25
- 王伟课题组与合作者开发新型新冠病毒检测分型传感器2023.04.21
- 周岳课题组阐述BMI1和组蛋白H2A单泛素化对拟南芥三维基因组的调控作用2023.04.19
- 陆剑课题组揭示冠状病毒Spike蛋白演化规律2023.04.17
- 李磊课题组揭示孢粉素聚合的分子机制2023.03.31
- 何跃辉团队揭示植物“越冬记忆”形成的分子与表观遗传机制2023.03.23
- 肖俊宇研究组阐明免疫球蛋白IgM被特异性受体FcμR识别的分子机制2023.03.23
- 钟上威团队揭示植物光温受体phyB的入核调控机制2023.03.17
- 高歌课题组成果入选2022年度“中国生物信息学十大进展”2023.03.06
- 遇赫课题组与合作者共同揭示冰期前后欧洲狩猎采集人群的遗传历史2023.03.02