
陈雪梅 教授
植物小RNA和RNA修饰研究组
北京大学 生命科学学院 教授,博士生导师
电话:
E-mail:xuemei.chen@pku.edu.cn
1、小RNA合成代谢、细胞间和长距离运输以及作为信号分子参与植物高温应答的机制;
2、mRNA非典型加帽修饰的检测鉴定、合成与去除机理、以及在植物-细菌-环境互作中发挥的生物学功能;
3、开发应用于可定向改变及优化农艺性状的RNA技术。
4、叶绿体发育,基因表达及其RNA修饰。
1、植物中microRNA合成、降解和作用方式的分子机制
陈雪梅教授于2002年发现microRNA在植物中广泛存在,是植物领域首先发现microRNA的三个实验室之一,鉴定了参与miRNA生物合成的两个关键基因DICER-LIKE 1和HEN1(Park et al., Current Biology, 2002)。2005年,首次发现植物microRNA在3’末端核糖基上带有2’-O-甲基化修饰,且这种修饰是由甲基转移酶HEN1引入的(Yu et al., Science, 2005;Yang et al., NAR, 2006;Huang et al., Nature, 2009),是小RNA领域的重要发现之一。HEN1在动物中的直系同源蛋白后来也被多个实验室证明可以甲基化修饰内源性siRNA和piRNA。在研究microRNA生物合成和甲基化修饰的同时,陈雪梅教授团队发现了末端2'-O-甲基化修饰可以保护小分子RNA免于降解(Li et al., Current Biology, 2005)。首次证明了小RNA降解会伴随着3'末端的截断和尿苷化,鉴定了多个参与microRNA降解途径的基因,如SMALL RNA DEGRADING NUCLEASE (SDN)核酸外切酶和尿苷化microRNA的核苷酸转移酶等,并揭示了植物小RNA的降解机制(Ramachandran et al., Science, 2008; Zhao et al., Current Biology, 2012; Zhai et al., Plant Cell, 2013; Ren et al., PNAS, 2014; Tu et al., PLoS Genetics, 2015;Yu et al., PLoS Biology, 2017; Chen et al., Nature Communications, 2018)。后续多个实验室在动物研究中发现动物体内的microRNA和microRNA前体也会发生尿苷化。在植物中,microRNA介导靶基因抑制的方式有两种:mRNA切割和翻译抑制。microRNA产生后进入ARGONAUTE 1(AGO1)主导的RNA诱导沉默复合体(RISC)发挥mRNA切割功能,该过程曾长期以来被认为是植物microRNA的主要功能。陈雪梅教授早期研究发现:miR172是通过降低其靶基因AP2的蛋白质水平而不是mRNA水平来发挥功能的(Chen, Science, 2004)。在后续研究中,陈雪梅教授团队进一步证明了植物microRNA确实可以通过AMP1介导的翻译抑制作用方式对下游靶基因进行调控,并首次提出了该翻译抑制调控过程发生在粗面内质网上(Li et al., Cell, 2013)。后续研究发现植物microRNA可以在粗面内质网上诱导一类内源siRNA(phased siRNAs)的生物合成(Li et al.,eLife, 2016)。
2、microRNA的细胞间移动及其作为信号分子参与植物热形态建成的分子机制探索
MicroRNA 具有非细胞自主性的特性,表现为不仅在其产生的细胞中发挥作用,还可以在细胞、组织以及生物体之间转运来调控靶基因的表达,在植物生长发育及对环境胁迫响应过程中发挥至关重要的作用(Chen et al., Nature Reviews Molecular Cell Biology, 2021)。实验室现阶段的研究致力于探究小分子RNA移动的分子机制。最近研究发现拟南芥中微管的破坏会导致移动microRNA的非细胞自主性作用发生缺陷,揭示了微管可以通过抑制microRNA在细胞质中装载到AGO1,从而促进microRNA的非细胞自主性功能的机制(Fan et al., Developmental Cell, 2022)。此外,近期研究发现microRNA参与调控植物热形态建成,其中microRNA156及其靶标SQUAMOSA PROMOTER-BINDING-PROTEIN-LIKE 9(SPL9)通过调节生长素敏感性来控制植物响应环境变化的生长可塑性(Sang et al., Nature Communications, 2023),移动的microRNA可能也在热形态建成中发挥重要作用。
RNA修饰是影响基因表达调控的重要方式。其中真核生物m7G加帽修饰影响着RNA从转录到翻译等一系列重要生物学过程。近年来,我们在植物中首次发现mRNA 5’末端存在除m7G以外的一种新型的非典型NAD+帽子修饰,并初步证实这些NAD+加帽修饰RNA可发生剪切、加尾并被核糖体招募,从而进一步参与蛋白质翻译等过程(Wang et al., PNAS., 2019; Zhang et al., PNAS., 2019)。并且创新性地开发了多种高效、灵敏、特异的液相色谱-质谱联用技术以及高通量测序技术对植物中的包括NAD+在内的多种非典型加帽修饰RNA进行了鉴定(FAD、dpCoA等)(Hu et al., PNAS., 2021; Zhang et al., PNAS., 2021)。为更好的研究这些非典型加帽修饰RNA的功能,我们筛选了一系列可特异性去除非典型帽子的去修饰酶,并对其脱帽活性进行了深入的解析,同时构建了相应拟南芥突变体,以期阐明NAD+等非典型加帽修饰RNA在响应环境胁迫、植物抗病免疫等方面发挥的生物学功能。
Wang XF, Yu DL, Yu JC, Hu H, Hang RL, Amador Z, Chen Q, Chai JJ, Chen XM. (2024) Toll/interleukin-1 receptor (TIR) domain-containing proteins have NAD-RNA decapping activity. Nat. Commun., 15: 2261.
Hang RL, Li H, Liu WJ, Wang RY, Hu H, Chen M, You CJ, Chen XM. (2024) HOT3/eIF5B1 confers Kozak motif-dependent translational control of photosynthesis-associated nuclear genes for chloroplast biogenesis. Nat. Commun., 15: 9878.
Hang RL, Xu Y, Wang XF, Hu H, Flynn N, You CJ, Chen XM. (2023) Arabidopsis HOT3/eIF5B1 constrains rRNA RNAi by facilitating 18S rRNA maturation. PNAS, 120: e2301081120.
Wang XF, Yuan D, Liu YC, Liang YM, He J, Yang XY, Hang RL, Jia H, Mo BX, Tian F, Chen XM, Liu L. (2023) ID1 functions as an autonomous phosphate (Pi) regulator upstream of the miR399-ZmPHO2 signaling module in maize. Plant Cell, 35: 2208-2231.
Sang Q, Fan LS, Liu TX, Qiu YJ, Du J, Mo BX, Chen M, Chen XM. (2023) MicroRNA156 conditions auxin sensitivity to enable growth plasticity in response to environmental changes in Arabidopsis. Nature Comm., 14: 1449.
Xu Y, Zhang Y, Li ZF, Soloria A, Potter S, Chen XM. (2023) The N-terminal extension of Arabidopsis ARGONAUTE 1 is essential for microRNA activities. PLoS Genet., 19: e1010450.
Wang Y, Le BH, Wang JQ, You CJ, Zhao YH, Galli M, Xu Y, Gallavotti A, Eulgem T, Mo BX, Chen XM. (2022) A novel factor that recruits and excludes Pol IV-mediated DNA methylation in a site-specific manner. Sci. Adv., 8: eadc9454.
Fan LS, Gao B, Xu Y, Flynn N, Le B, You CJ, Li SF, Achkar N, Manavella PA, Yang ZB, Chen XM. (2022) Arabidopsis AAR2, a conserved splicing factor in eukaryotes, acts in microRNA biogenesis. PNAS, 119: e2208415119.
Dong HJ, Wang XF, Tan C, Gao L, Cui J, Liu L, Mo BX, Xing YZ, Yu Y, Chen XM. (2022) NAD+-capped RNAs are widespread in rice (Oryza sativa) and spatiotemporally modulated during development. Sci. China-Life Sci., 65: 2121-2124.
Fan LS, Zhang C, Zhang Y, Stewart E, Jez J, Nakajima K, Chen XM. (2022) Microtubules promote the non-cell autonomous action of microRNAs by inhibiting their cytoplasmic loading onto ARGONAUTE1 in Arabidopsis. Dev. Cell., 57: 995-1008.
Liang C, Cai Q, Li SF, You CJ, Xu C, Gao L, Cao DC, Yu Y, Mo BX, Chen XM. (2022) RBV, an evolutionarily conserved WD40 repeat protein, promotes microRNA biogenesis and loading into ARGONAUTE1 in Arabidopsis. Nat. Comm., 13: 1217.
Chen XM, Rechavi O. (2021) Plant and animal small RNA communications between cells and organisms. Nat. Rev. Mol. Cell Biol., 23: 85-203.
Hu H, Flynn N, Chen XM. (2021) Discovery, processing, and potential role of noncanonical caps in RNA. Epitranscriptomics, 12: 435-469.
Hu H, Flynn N, Zhang HL, You CJ, Hang RL, Wang XF, Zhong H, Chan ZL, Xia YJ, Chen XM. (2021) SPAAC-NAD-seq, a sensitive and accurate method to profile NAD+-capped transcripts. PNAS, 118: e2025595118.
Zhang HL, Zhong H, Wang XF, Zhang SD, Shao XJ,Hu H, Yu ZL, Cai ZW, Chen XM, Xia YJ. (2021) Use of NAD tagSeq II to identify growth-phase dependent alterations in E. coli RNA NAD+-capping. PNAS, 118: e2026183118.
Zhang BL, Chen XM. (2021) Secrets of theMIR172family in plant development and flowering unveiled. Plos Biol., 19: e3001099.
Yang XY, You CJ, Wang XF, Gao L, Mo BX, Liu L, Chen XM. (2021) Widespread occurrence of microRNA-mediated target cleavage on membrane-bound polysomes. Genome Biol., 22: 15.
Zhang C, Fan LS, Le BH, Ye PY, Mo BX, Chen XM. (2020) Regulation ofARGONAUTE10expression enables temporal and spatial precision in axillary meristem initiation in Arabidopsis. Dev. Cell, 55: 603-616.
Su ZX, Wang NN, Hou ZM, Li BY, Li DN, Liu YH, Cai HY, Qin Y, Chen XM. (2020) Regulation of female germline specification via small RNA mobility in Arabidopsis. Plant Cell, 32: 2842-2854.
Zhang BL, You CJ, Zhang Y, Zeng LP, Hu J, Zhao ML, Chen XM. (2020) Linking key steps of microRNA biogenesis by TREX-2 and the nuclear pore complex in Arabidopsis. Nat. Plants, 6: 957-969.
于宇、王旭峰、胡昊、黄捷、李尚泽、刘慧超、王倩玉、李双、郭译文、杭润来、王润语、王丽、谢奥林、张琦玥、陈凌翔、王依然、林汇源、李楠、王韩、余鑫玥