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SUMMARY
Oakleaf butterflies in the genus Kallima have a polymorphic wing phenotype, enabling these insects to
masquerade as dead leaves. This iconic example of protective resemblance provides an interesting evolu-
tionary paradigm that can be employed to study biodiversity. We integrated multi-omic data analyses and
functional validation to infer the evolutionary history of Kallima species and investigate the genetic basis
of their variable leaf wing patterns. We find that Kallima butterflies diversified in the eastern Himalayas and
dispersed to East and Southeast Asia. Moreover, we find that leaf wing polymorphism is controlled by the
wing patterning gene cortex, which has been maintained in Kallima by long-term balancing selection. Our re-
sults provide macroevolutionary and microevolutionary insights into a model species originating from a
mountain ecosystem.
INTRODUCTION

Mountain ecosystems harbor extraordinarily diverse terrestrial

biodiversity in which dramatic elevational gradients may have

promoted the formation of microenvironments and accelerated

diversification (Rahbek et al., 2019a). For example, geographic

changes resulting from orogenic activity, combined with climate

change, caused the Qinghai-Tibetan Plateau (QTP) uplift and
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produced diverse habitats for a variety of organisms (Favre

et al., 2015). Montane biota and its relationship to lowland biodi-

versity hotspots have been topics of intense research interest, in

which relevant studies have generally been conducted above the

species level (Rahbek et al., 2019b). Here, we focus on cryptic

oakleaf butterflies of the genus Kallima (Nymphalidae: Nympha-

linae), whose members are phenotypically diverse and distrib-

uted in montane and lowland biodiversity hotspots (Küppers,
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2015a; Myers et al., 2000; Tsukada, 1985). The highly variable

wing patterns and pan-Asian distribution of this group make it

uniquely suited to study how geographic changes and natural

selection shape phenotypic and species diversity.

Because leaves are ubiquitous in nature, leaf masquerade

mimicry exists widely throughout the animal kingdom as a spe-

cial form of plant resemblance (Komárek, 2003), as observed

in Amazon leaffish (Monocirrhus polyacanthus), Malayan leaf

frog (Megophrys nasuta), leaf insects (Phylliidae), and leaf-mimic

katydids (various Tetigoniidae). Kallima butterflies are among the

most well-known and striking examples of leaf mimics, regarded

by Alfred Russel Wallace as ‘‘the most wonderful and undoubted

case of protective resemblance in a butterfly’’ (Wallace, 1889).

When the wings of Kallima butterflies are folded back, they

look like dead, brown leaves, including wing pattern elements

resembling the leaf midrib, secondary veins, petiole, and variable

markings resembling decay. The extreme, cryptic wing patterns

of these species seem to provide strong evidence for natural

selection (Beddard, 1892; Morgan, 1903), although many au-

thors have denied that complex mimetic phenotypes can evolve

gradually (Goldschmidt, 1945; Punnett, 1915; Watson, 1936).

Therefore, Kallima butterflies have drawn considerable attention

inmultiple biological disciplines including taxonomy, phylogeog-

raphy, physiology, and morphology, over the past few decades

(Kamalanathan and Mohanraj, 2012; Küppers, 2015a, 2015b;

Nakamura, 2014; Shirozu and Nakanishi, 1984; Tang et al.,

2013; Zhou et al., 2013), and we recently reported a reference

genome assembly of Kallima inachus (Yang et al., 2020). There

is increasing evidence that the main characteristics of the leaf-

like wing pattern tend to be produced by gradual selection rather

than saltation (large, sudden mutational changes) (Alexander,

2019; Suffert, 1927; Suzuki et al., 2014, 2019). These studies

have laid the foundation for exploration of the genomic basis of

the various wing pattern elements that together constitute the

mimetic phenotype.

In the present study, we performed a holistic analysis to char-

acterize the genetic and species diversity of Kallima butterflies.

At the macroevolutionary level, we traced the origin of the genus

Kallima by sequencing the genomes of 105 butterflies from 21

nymphalid genera. Phylogenetic and population genetic ana-

lyses suggest that Kallima butterflies diversified on the Asian

mainland, with several lineages dispersing to areas that are

currently islands to the south and east. Subsequent demo-

graphic and biogeographical modeling efforts indicate that the

eastern Himalayas are a center of Kallima diversification. At the

microevolutionary level, to dissect the genomic basis of leaf

wing polymorphism, we focused on K. inachus and performed

genome-wide association studies (GWASs) by sequencing the

genomes of 78 K. inachus butterflies with polymorphic pheno-

types. A combination of evidence obtained from de novo

genome assembly, gene expression, chromatin interaction ana-

lyses, and CRISPR-Cas9 genome editing led to the identification

of a knownwing pattern regulator, the cortex gene (Nadeau et al.,

2016; Van’t Hof et al., 2016; van der Burg et al., 2020), that plays

amajor role in controlling leaf wing polymorphism, likely by regu-

lating a potential downstream gene, snake, involved in butterfly

pigmentation and color switching (Nishikawa et al., 2013; Yoda

et al., 2020). Furthermore, through population genetic analyses,
we show that leaf mimicry is maintained by balancing selection,

possibly as a type of negative frequency-dependent selection,

providing a rare and remarkable example with clear survival

value supporting the role of long-term balancing selection in

adaptive evolution. In summary, we explore the evolution of

Kallima butterflies and provide genetic evidence for the morpho-

genesis of leaf mimicry, which serves as a complex, charismatic

model for understanding microevolution, macroevolution, adap-

tation, and Darwinian gradualism.

RESULTS

Evolution and demography of Kallima butterflies
To characterize the evolutionary history of leaf mimicry in Kallima

butterflies, we collected 36 samples from the genus Kallima

including specimens of Kallima knyvettii, Kallima limborgii

amplirufa, Kallima paralekta, Kallima incognita, two subspecies

of Kallima alicia, and two subspecies of K. inachus, from 11

geographic locations in East and Southeast Asia (Figure 1A;

Table S1). Notably, the sampling locations of three Kallima spe-

cies overlapped in Medog, southeastern Tibet, suggesting that

the eastern Himalayan region could represent either a hotspot

of diversification or a glacial refuge. To test this hypothesis and

disentangle the relationships among Kallima species and popu-

lations, we analyzed whole-genome sequencing data from 105

butterfly samples from 21 nymphalid genera and constructed

phylogenies using genome-wide SNPs (Figure 1B; Figures S1A

and S1B). The Kallima species formed a monophyletic group,

but Kallima and the other leaf-mimicking species that we

sampled formed a polyphyletic assemblage. These species

included Doleschallia bisaltide (autumn leaf butterfly), Kalli-

moides rumia (African leaf butterfly), and Junonia cymodoce

(blue leaf butterfly), suggesting multiple origins of leaf

masquerade mimicry in Nymphalidae. Delving deeper into the

genus Kallima, both principal component analysis (PCA) and

ADMIXTURE analysis (Alexander et al., 2009) indicated the exis-

tence of lineages with distinct genetic structure roughly corre-

sponding to recognized species (Figures 1C–1E; Figure S1C).

We calculated the fixation index (FST) across the genome for

Kallima butterflies and observed that the FST values increased

at increasing levels in the taxonomic hierarchy: populations, sub-

species, and species (Table S2). Furthermore, we estimated his-

torical population sizes using pairwise sequentially Markovian

coalescent (PSMC) and SMC++ models (Li and Durbin, 2011;

Terhorst et al., 2017). Unlike other mainland Kallima butterflies,

K. knyvettii has consistently had a small effective population

size (Figure 2A; Figures S2A and S2B). Both K. limborgii amplir-

ufa and K. paralekta had less nucleotide diversity (p) than other

mainland species/subspecies (Table S2). To further investigate

population dynamics of these species, we performed genome-

wide demographic inference using the Generalized Phylogenetic

Coalescent Sampler (G-PhoCS) (Gronau et al., 2011) and Tree-

mix (Pickrell and Pritchard, 2012). Both population genetic ana-

lyses yielded evidence supporting extensive, directional gene

flow from Medog in southeastern Tibet to insular populations

of K. alicia alicia on Hainan and K. paralekta on Java, respec-

tively; from the Medog population of K. incognita to

K. paralekta on Java and K. l. amplirufa on the Thai-Malay
Cell 185, 3138–3152, August 18, 2022 3139
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Figure 1. The geographic distribution, genome-wide phylogeny, and genetic structure of Kallima butterflies

(A) Collection locations of the Kallima samples we analyzed are shown in different colors, along with images of male dorsal and ventral wing patterns.

(B) A rooted maximum-likelihood phylogeny based on the genome-wide SNP data of 14 representative samples.

(C) Principal component analysis (PCA) shows separate groups of 34 Kallima samples from different species.

(D) Population structure analysis showing the genetic structure of 33 Kallima samples, with the colored fractions representing the genetic composition with K

clusters.

(E) Cross-validation (CV) error plot for population structure analysis showing that K = 5 is the likely number of true genetic populations according to cross-

validation (CV) error.

See also Figure S1 and Tables S1 and S2 in the supplemental information.
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Peninsula, and from the nominate subspecies on themainland to

the island subspecies of K. inachus formosana on Taiwan

(Figures 2B–2D; Figures S2D and S3; Table S3). However, little

gene flow was detected between the mainland populations of

K. incognita and K. inachus chinensis (Figure S3). These results

suggest dispersal from the Asian mainland to peripheral islands

following the earlier divergence of K. incognita and K. inachus.

The inferred divergence times of K. i. formosana and

K. paralekta in the mid-Pleistocene (Figures 2C and 2D) corre-

sponded to a period of intense global sea level fluctuations

that continued until the end of the Pleistocene (Voris, 2000;

Woodruff, 2010). The continental islands of Hainan and Taiwan

were connected to the mainland by land bridges, and Java, Su-
3140 Cell 185, 3138–3152, August 18, 2022
matra, and Borneo were connected to the Thai-Malay peninsula

in a single landmass known as Sundaland (Cannon et al., 2009;

Lohman et al., 2011). Thus, it is likely that many Kallima taxa

that are currently restricted to islands were formerly part of large,

panmictic populations that became isolated when sea levels

rose. We then evaluated the suitability of the climate for Kallima

butterflies using the maximum entropy model (Maxent) (Phillips

et al., 2006). The results of our niche model support the notion

that the eastern Himalayan area has been climatically suitable

for Kallima butterflies since the last interglacial (LIG) and that

land bridges that formed during the last glacial maximum

(LGM) facilitated secondary contact and gene flow among

Kallima species/subspecies (Figure 2E; Figure S2C). In
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Figure 2. Demographic history of Kallima butterflies

(A) Historical effective population sizes inferred from 13 representative Kallima samples using PSMC, assuming a mutation rate of m = 3 3 10�9 and an average

generation time of g = 0.5 years.

(B–D) Divergence times, effective population sizes, and migration rates inferred among Kallima butterflies using G-PhoCS. The dashed lines indicate divergence

times, and the branch widths are proportional to the population sizes.

(E) Ecological niche modeling performed for Kallima butterflies using Maxent, where the suitable habitat is predicted beginning from the last interglacial (LIG)

period. The color scheme indicates the probability of occurrence from high (red) to low (blue).

See also Figures S2 and S3 and Tables S2 and S3 in the supplemental information.
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summary, these results suggest that Kallima butterflies likely

differentiated in the eastern Himalayas and subsequently

dispersed to areas that are now islands.

Genetic basis of leaf wing polymorphism
Since Kallima butterflies have polymorphic leaf wing patterns,

we characterized the ventral wing morphology of K. i. chinensis

into discrete wing forms (Figure 3A; Figures S4A and S4B). To
assess phenotypic segregation, we established several crosses

of K. i. chinensiswith different wing forms and were fascinated to

discover ten discrete leaf wing forms in total, which were

likely determined by combinations of five alleles (P, V, S, R,

andM, for plain, veined, scrambled, rippled, andmoldy, respec-

tively, describing the wing patterns) located at a single Mende-

lian locus (Figures 3A and 3B). To map the leaf mimicry locus

genetically, we sequenced genomes of 78 K. i. chinensis
Cell 185, 3138–3152, August 18, 2022 3141
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Figure 3. A major locus controlling leaf wing polymorphism in K. inachus

(A) Ten ventral wing forms demonstrating polymorphism.

(B) Five contributing cortex alleles and their dominant epistasis related to leaf wing patterns.

(C) Multiple genome-wide association studies performed on veined versus scrambled forms, plain versus scrambled forms, plain versus veined forms, moldy

versus plain forms, and rippled versus plain forms. The leaf wing locus localized to a major peak of false discovery rate (FDR)-adjusted p values on chromo-

some 26.

(D) The cortex gene is located in the major peak on chromosome 26.

See also Figures S4 and S6 and Table S1 in the supplemental information.

ll
Article
specimens from China and conducted GWASs to compare mul-

tiple forms (Table S1). The top-associated GWAS hit was a strik-

ing, major peak on chromosome 26 (Figures 3C and 3D;
3142 Cell 185, 3138–3152, August 18, 2022
Figures S4C–S4G). Moreover, we noted that cortex was the

only gene located in the top-associated region identified in the

genomic comparisons of multiple forms (Figure 3D; Data S1).



ll
Article
The gene is known to control wing and body color patterns in

silkworms, Batesian mimicry polymorphism in Papilio clytia,

Müllerian mimicry in Heliconius butterflies, industrial melanism

in British pepperedmoths, and seasonal wing coloration in Juno-

nia coenia (Ito et al., 2016; Nadeau et al., 2016; Van’t Hof et al.,

2016; van der Burg et al., 2020; VanKuren et al., 2019). Therefore,

cortex is particularly important for lepidopteran wing morpho-

genesis, and variants of this gene have repeatedly experienced

natural selection. Notably, these associated hits all presented

strong but different patterns of linkage disequilibrium (LD) within

the cortex region (Figure 4A); thus, we hypothesized that multiple

mechanisms may independently lead to the reduction or sup-

pression of recombination among different cortex haplotypes.

To test this hypothesis, we performed de novo genome assem-

bly for four K. i. chinensis samples and obtained four individual

genomes containing five complete cortex haplotypes (Figure 4B;

Table S1). Indeed, we identified two chromosomal inversions

spanning haplotypes V and R with distinct lengths and bound-

aries, corresponding to different patterns of associated hits (Fig-

ure 4B; Figure S5A). Given that the cortex genes of two other

nymphalid genera, Heliconius and Junonia, have a conserved

distal transcription start site (TSS) specific to wing development

(Hanly et al., 2022; Nadeau et al., 2016; van der Burg et al., 2020),

we also annotated the distal TSS and additional exons based on

available RNA-seq data and sequence homology in genomic

DNA for haplotypes V and P (Figure 4B). The inversion observed

in V contained only cortex and its predicted proximal promoter

and exon regions based on RNA-seq data, but the predicted

distal promoter region based on homology was excluded and

showed the opposite orientation, whereas the inversion found

in R contained both cortex and multiple flanking genes, such

as two trehalase genes (Treh-1a and Treh-1b) (Data S1). Since

Treh-1a is required for the development of the red autumnmorph

of Junonia coenia (van der Burg et al., 2020), these trehalase

genes might also be involved in the expression of phenotype

R. Moreover, a phylogenetic analysis of the five haplotypes re-

sulted in separate clusters of V and R grouped with M and S,

respectively, suggesting the involvement of independent chro-

mosomal rearrangement across the cortex region (Figures S5B

and S5C). We also addressed the reduced linkage in S using

high-throughput chromosome conformation capture (Hi-C)

based on one individual with an SS genotype, which revealed

that the cortex region was a putative topologically associating

domain (TAD) including only the cortex gene (Figure 4C; Fig-

ure S5E; Data S1). A related observation was that this putative

TAD was not detected in the Hi-C data generated using several

samples includingP,S, andR haplotypes.Moreover, we demon-

strated that the cortex gene inM had a pronounced signature of

positive selection (branch-site model, p < 0.01) in the form of a

nonsynonymous substitution (K96H) (empirical Bayes analysis,

p > 95%) (Figures S5B–S5D). To further investigate the reduced

recombination between cortex haplotypes, we calculated the

proportion of transposable elements (TEs) among the five haplo-

types and observed that more long interspersed nuclear ele-

ments (LINEs) and long terminal repeat (LTR) elements accumu-

lated in the four derived haplotypes than in the original haplotype

P (Figure S5F). The accumulation of LINEs and LTR elements

mainly accounted for the differences in the proportion of TEs
observed between cortex haplotypes. In particular, more LINEs

accumulated near the breakpoint regions of the inversions in V

(21.99%) and R (21.47%) than in the homologous regions in P

(12.62% and 15.4%), indicating that TEs may contribute to the

reduction in recombination between cortex haplotypes. We

also performed functional validation of cortex using CRISPR-

Cas9-mediated genome editing. Loss of cortex function in

mosaic knockouts (mKOs) led to the disruption of leaf wing phe-

notypes (Figures 4D, S5G, and S5H). Scale pigmentation on the

dorsal and ventral wings of cortex mKOs was faded around the

lateral vein region, and the pattern elements mimicking the leaf

midrib vein were blurred and darkened, which was consistent

with the effects of cortex mKO observed in multiple Heliconius

species, Danaus plexippus, and Junonia coenia (Livraghi et al.,

2021; van der Burg, 2020) and suggested a conserved function

of cortex in regulating butterfly scale cell development. In sum,

our results provide clear evidence that the cortex gene

plays a key role in controlling leaf mimicry, which is shaped

by natural selection, and both structural and nonstructural

genetic mechanisms have contributed to maintaining leaf wing

polymorphism.

To investigate the development of leaf wing patterns in K. i.

chinensis, we explored the expression of cortex via quantitative

reverse transcription PCR (qRT-PCR) and evaluated transcrip-

tome-wide gene expression via RNA-seq in veined (VP) and plain

(PP) forms during a series of wing developmental stages

(Figures 5A–5C; Table S1; Data S1). In both forms, cortex was

expressed at low levels based on bulk RNA-seq data. However,

we did identify a number of known Hox and wing patterning

genes that were differentially expressed in our samples. Notably,

ultrabithorax, which is important for determining hindwing iden-

tity in many species of Lepidoptera (Matsuoka and Monteiro,

2021; Tendolka et al., 2021), was also upregulated in the hindw-

ings of K. i. chinensis (Figure 5B). Subsequently, we examined

the expression of cortex in qRT-PCR comparisons, which

showed similar and variable expression in plain and veined indi-

viduals in the fifth-instar larval stage and the prepupal stage,

likely owing to its much lower expression level than the reference

gene ef1a (Figure 5C). However, we observed significant upre-

gulation and wing-biased expression of cortex in veined individ-

uals relative to plain individuals 1 day after pupation, followed by

a decreased but still significantly high expression level 3 days af-

ter pupation (Figure 5C). In addition, the in situ hybridization of

cortex in fifth-instar larval-stage wings showed spatial corre-

spondence to the margin region of the adult wing in the plain

(PP) form (Figure S6A). Our results demonstrate the spatiotem-

poral regulation of cortex expression across developmental

stages, tissues, and forms.

According to the observed expression profiles of cortex, we

characterized the differentially expressed genes between body

and wing tissues, forewings and hindwings, and veined and plain

forms in focal developmental stages, which showed different

expression patterns between body and wing tissues and gener-

ally upregulated expression patterns in hindwings relative to

forewings (Figure 5B; Data S1). Notably, the comparison of

veined (VP) and plain (PP) hindwing discs on days 1 and 3 after

pupation identified a significantly upregulated gene, snake (Fig-

ure 5B; Data S1). Since snake is involved in swallowtail butterfly
Cell 185, 3138–3152, August 18, 2022 3143
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Figure 4. Suppressed recombination in cortex haplotypes and functional validation in K. inachus

(A) Linkage disequilibrium (LD), measured as r2, is plotted and the elevated LD is observed around the cortex region in the samples of veined, rippled, and

scrambled forms.

(legend continued on next page)
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pupal and wing pigmentation (Nishikawa et al., 2013; Yoda et al.,

2020) and shows expression patterns correlated with those of

cortex, we consider it a putative downstream target in the leaf

wing developmental pathway. We also examined the expression

of genes adjacent to cortex and identified multiple genes that

were upregulated in pupal wings relative to the abdomen, such

as B9d1, PRG4, DPH7, His3.3A, and parn (Data S1). Many of

these genes were involved in the long inversion region of R, sug-

gesting their potential roles in forming the rippled pattern. More-

over, we noted that another wing pattern gene, WntA, (Martin

et al., 2012; Mazo-Vargas et al., 2017) was upregulated 1 day af-

ter pupation and showed similar patterns of expression in veined

(VP) and plain (PP) forms, suggesting that it may play a

conserved role in wing development of different forms

(Figures 5D and 5E; Data S1).

Evolution of leaf wing polymorphism
Leaf wing polymorphism originated prior to diversification of the

genus Kallima and has been maintained throughout its evolu-

tionary history (Figures 6A–6C). Based on the dominance and

recessiveness as well as the divergence times of different hap-

lotypes (Figures 3A, 3B, and 6A–6C), haplotypes M and S were

likely derived from the original, recessive haplotype P, whereas

independent chromosomal inversions led to haplotypes V and

R. Therefore, we hypothesized that the frequencies of the poly-

morphic forms, such as trans-specific polymorphisms, which

are maintained much longer than other mimicry polymor-

phisms, have been stabilized by long-term balancing selection

(Joron and Mallet, 1998; Mallet and Joron, 1999). Nevertheless,

the theoretical explanation for this hypothesis may be similar to

the explanation for polymorphism in Batesian mimicry, in that

imperfect leaf mimicry may be improved by suppressing the

recombination of different leaf mimetic haplotypes (Booker

et al., 2015; Charlesworth and Charlesworth, 1975). We exam-

ined the nucleotide variation in cortex and neighboring genes

by comparing different haplotypes using Hudson-Kreitman-

Aguadé (HKA) tests (Hudson et al., 1987), which consistently

revealed a significant excess of nucleotide polymorphism in

cortex relative to neighboring genes in comparisons among

M, P, S, and V. This excess polymorphism suggests the effect

of balancing selection on cortex, which may be an important

driving force for maintaining leaf wing polymorphism in Kallima

butterflies (Table S4). One exception was the increased poly-

morphism of both cortex and parn in comparison with R,

revealing strong LD and genetic hitchhiking due to the long

span of the chromosomal inversion found in R (Figure 4B;

Table S4). We also observed varying intron lengths in cortex

relative to the stable intron lengths observed in neighboring

genes, indicating the existence of intron variants in cortex
(B) Alignment of the cortex region among five haplotypes suggests two different ch

are shown in the same color. The predicted distal transcription start site (TSS) and

based on RNA-seq data (blank rectangle) or sequence homology (dashed rectan

(C) Heatmaps showing the normalized average interaction frequencies of all puta

putative TAD containing cortex and neighboring genes in haplotype S.

(D) Whole wings showing cortex loss-of-function effects caused by CRISPR-Cas

results in faded scale pigmentation around the lateral vein region and a blurred a

See also Figure S5, Tables S1 and S4, and Data S1 in the supplemental informa
and a possible role of alternative splicing or expression regula-

tion in promoting leaf wing polymorphism (Figure S6B).

To further dissect the type of balancing selection affecting Kal-

lima, we counted phenotype and genotype frequencies and se-

lection coefficients in a local population of K. i. chinensis and

observed a large proportion of P, V, and S haplotypes and a

small proportion of recently differentiated R and M haplotypes

in this population (Figure S6C; Data S2). In addition, the inferred

cortex sequence network had five distinct clades, supporting the

stabilization of polymorphism after early origination (Figure S6D).

Since R and M only existed in heterozygotes in both field sam-

ples and butterflies obtained from lab crosses (Figure 3B; Fig-

ure S6C), we hypothesized that homozygote disadvantage

limited R and M to low frequencies with respect to the major

role of frequency-dependent selection in maintaining leaf wing

polymorphism, similar to a recently reported scenario of inver-

sion polymorphism and mutation load in Heliconius numata

(Jay et al., 2021). We further explored the driving forces of leaf

wing polymorphism by simulating evolutionary scenarios with

different population genetic parameters, and a model that

showed a good fit to the observed data was an outbred popula-

tion subject to negative frequency-dependent selection with

different fitness levels assigned to different forms (Figure S6E;

Data S2). These results point to an important role of long-term

balancing selection in maintaining Kallima leaf wing polymor-

phism, with both negative frequency-dependent selection and

homozygote disadvantage acting on different haplotypes.

DISCUSSION

Since the discovery of homeobox genes (Laughon and Scott,

1984; McGinnis et al., 1984; Scott and Weiner, 1984), the roles

of genes in the evolution of morphological diversity have been

investigated in multiple systems with the aim of interpreting

and synthesizing developmental constraints and evolvability

(Carroll, 2008; Gilbert et al., 1996; Hoekstra and Coyne, 2007).

Notably, multiple studies on color patterns have made great

strides in revealing the underlying genetics of phenotypic diver-

sity, such as inversion polymorphisms of the P locus controlling

mimicry wing patterns in Heliconius numata (Joron et al., 2011),

the agouti-related peptide 2 gene involved in switching stripe

patterns in African cichlid fishes (Kratochwil et al., 2018), and

the transcription factor-encoding Pannier gene, leading to

melanic pattern polymorphisms in the harlequin ladybird (Ando

et al., 2018; Gautier et al., 2018). In the present study, we used

diverse leaf wing butterflies as a system to address long-stand-

ing questions concerning the evolution and maintenance of

complex, mimetic wing patterning and polymorphisms. By char-

acterizing the evolution and underlying genetic basis of leaf
romosomal inversions in the V andR haplotypes, where locally collinear blocks

additional exons of cortex are annotated and labeled in the P and V haplotypes

gle).

tive topologically associating domains (TADs) on chromosome 26 as well as a

9 genome editing on the ventral wing surfaces. Cortexmosaic knockout (mKO)

nd darkened leaf midrib on the ventral side (indicated by green arrows).

tion.

Cell 185, 3138–3152, August 18, 2022 3145



 va
lue

)

 va
lue

)

A

C

D E

B

Figure 5. Gene expression patterns in K. inachus
(A) Principal component analysis showing that individual samples form clusters according to the developmental stage and tissue, regardless of the cortex

genotype.

(B) Volcano plots showing differentially expressed genes betweenwing and body tissues and between forewing and hindwing tissues at all developmental stages

and between the VP and PP genotypes in the prepupal stage 1 and 3 days after pupation.

(C) Spatiotemporal expression patterns of cortex were examined by qRT-PCR, revealing significantly elevated expression in the VP forewing relative to the PP

forewing on day 1 after pupation and in the VP hindwing relative to the PP hindwing on day 3 after pupation. n = 3 for samples with the VP genotype in the fifth-

instar larval stage and n = 4 for the other samples. * indicates p < 0.05, Wilcoxon test.

(legend continued on next page)
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resemblance in Kallima butterflies, we determined that the evo-

lution of leaf wing polymorphism was a gradual process in which

toolkit genes were involved in producing these diverse wing pat-

terns. In particular, cortex plays a complex role in controlling leaf

mimicry diversity. There is clear evidence of phenotypic diversity

driven by natural selection acting on chromosomal inversions

and dimensional chromatin interactions at the DNA level.

In addition, there are differences in the spatiotemporal regula-

tion of gene expression at the RNA level. These findings demon-

strate that the wing pattern gene cortex has been repeatedly

employed in generating adaptive wing patterns in Lepidoptera

and, thus, further illustrate the genetic basis and evolvability of

wing development under the highly conserved nymphalid

ground plan (Jiggins et al., 2017; Oliver et al., 2012; Van Belle-

ghem et al., 2017).

In addition to resynthesizing developmental constraints and

evolvability in butterfly wings, the trans-specific leaf wing poly-

morphism provides extraordinary evidence of plant resemblance

phenotypes subject to long-term balancing selection, whereas

most other mimetic butterflies exhibit intraspecific balanced

polymorphism causing them to resemble toxic species, such

as the rich local polymorphism observed in Müllerian mimetic

Heliconius numata (Jay et al., 2021; Joron et al., 2011) and

Batesian mimetic Elymnias hypermnestra (Ruttenberg et al.,

2021). In contrast to leaf masquerade species, which, in the

case of Kallima, have resembled leaves for millions of years

aided by balanced polymorphism, Müllerian and Batesian

mimetic butterflies rapidly evolve different wing patterns. For

example, the butterflies of the Batesian mimetic Papilio polytes

species group share an ancestral polymorphism, but two of

the three species in the species group have secondarily lost

this polymorphism (Zhang et al., 2017). Owing to the generally

transient nature of balancing selection caused by the creation

of genetic load, the majority of available relevant evidence

comes from intraspecific studies (Hedrick, 2007). Balanced poly-

morphism shared by multiple species is relatively unusual but

has been documented in genes associated with host-pathogen

interactions, vertebrate major histocompatibility complex

(MHC) genes, and genes involved in the responses to biotic

and abiotic stresses in Arabidopsis thaliana and related species,

among others (Fijarczyk and Babik, 2015; Wu et al., 2017); this

phenomenon is difficult to resolve without clear functional infor-

mation. Thus, functional evidence of long-term balanced wing

polymorphism in Kallima butterflies provides rare insight into

the nature of selection maintaining polymorphisms, shedding

light on these forces driving evolutionary innovation and genetic

diversity.

Furthermore, we explored how species and genetic diversity

has been shaped by climate change and the Earth’s history at

macro and micro scales. Our findings indicate the eastern

Himalayan region where the rapid uplift of the QTP occurred (Co-

leman and Hodges, 1995; Royden et al., 2008) as a center of Kal-
(D and E) Spatiotemporal expression patterns ofWntAwere analyzed for each PP

using RNA-seq. The samples with PP and VP genotypes show similar patterns of e

adjusted p < 0.01 and *** indicates adjusted p < 0.001 (Wilcoxon test, normalize

(C–E) Data are presented as the mean (SEM).

See also Figure S6, Table S1, and Data S1 in the supplemental information.
lima butterfly diversification. We integrated microevolutionary

and macroevolutionary approaches with evidence from

genomic, demographic, and biogeographic analyses to trace

the origin and evolution of Kallima butterflies. Diversification

coincided with the uplift period of the QTP during the late

Miocene and early Pliocene (Figures 6A and 6B; Li and Fang,

1999; Royden et al., 2008; Zheng et al., 2000). The orogeny of

the plateau formed a dramatic elevational gradient and diversi-

fied habitats for butterflies in southeastern Tibet and north-

western Yunnan (Favre et al., 2015), creating opportunities for

isolation, habitat specialization, and divergence. Today, this re-

gion supports a diverse and highly endemic fauna, which al-

lowed us to identify severalKallima species in southeastern Tibet

and detect directional gene flow from this region. However,

some rare Kallima species with limited geographic ranges

remain unsampled; therefore, although this study offers insight

into the conserved gene regulatory networks and spectacular

phenotypic diversity of Kallima butterflies, many questions about

the evolution of these astounding, leaf-mimicking butterflies

remain to be answered more than 150 years after they were first

observed by Alfred Russel Wallace.

Limitations of the study
Due to low frequencies of K. i. chinensiswith rare leaf wing forms

in nature, we did not rear and collect sufficient individuals, which

prevented us from delving into the detailed functional basis of all

leaf-wing patterns, especially the potential functional elements in

multiple cortex haplotypes and their regulatory features. Addi-

tionally, given the limited genomic DNA quality of specimens

from K. alicia, K. incognita, K. paralekta, and K. limborgii, we

did not perform de novo assembly of cortex haplotypes from

these species. We were also unable to sample K. albofasciata,

K. horsfieldii, or K. spiridiva. Therefore, additional Kallima spec-

imens will be needed in follow-up studies to adequately address

the above issues.
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Figure 6. Maximum-likelihood phylogenies of five cortex haplotypes and coding sequence (CDS) regions in Kallima butterflies and of

genome-wide SNP data in nymphalid butterflies

(A) Genome-wide SNP data were used to construct a maximum-likelihood phylogenetic tree for Kallima and other nymphalid butterflies. Divergence times are

calibrated according to the divergence times of Kallima and Junonia (between 31.0033 and 44.768 mya), Kallimoides and Junonia (between 27.8345 and 40.7399

mya), and Historis and Kallima (between 37.827 and 54.7998 mya).

(B) A 50-kb region of the alignment of cortex haplotypes inK. inachuswith strong linkage disequilibriumwas used to construct amaximum-likelihood phylogenetic

tree with Junonia coenia (Jco) as the outgroup. Divergence times are calibrated based on the divergence of Kallima and Junonia (between 31.0033 and

44.768 mya).

(C) A maximum-likelihood phylogeny was constructed based on phased cortex CDSs extracted from individuals of K. inachus, K. alicia, K. limborgii, K. paralekta,

and K. knyvettii. Sequences with the same cortex haplotype form a well-supported monophyletic clade, indicating ancestral polymorphism and differentiation of

cortex haplotypes. The numbers indicate bootstrap support values.

See also Figure S6, Table S4, and Data S2 in the supplemental information.
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trinityrnaseq

RepeatModeler v1.0.11 Robert Hubley & Arian Smit http://www.repeatmasker.

org/RepeatModeler/

RepeatMasker v4.1.1 Smit, AFA, Hubley, R & Green, P. http://repeatmasker.org/

Custom codes This paper https://github.com/TDQ233/

Kallima-inachus; https://github.

com/wstree/kallima-project

Other

Nikon SMZ18 stereomicroscope Nikon N/A

HP LaserJet Pro M227fdw scanner HP N/A

Nikon DS-Ri2 digital camera Nikon N/A

Canon 70D digital camera Canon N/A

Illumina HiSeq Xten platform Illunima N/A

Nanopore promethION platform Oxford Nanopore Technologies N/A

Roche LightCycler 96 detection system Roche Applied Science N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Wei Zhang

(weizhangvv@pku.edu.cn).

Materials availability
All materials generated in this study are available from the lead contact upon request.

Data and code availability
Sequence data are available from the NCBI Short-Read Archive (SRA) database (accession numbers PRJNA698415, PRJNA698433,

and PRJNA533504). The de novo genome assemblies are available on Dryad (https://doi.org/10.5061/dryad.3xsj3txhj). The custom

codes are available on GitHub (https://github.com/TDQ233/Kallima-inachus, https://github.com/wstree/kallima-project).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Butterfly rearing and collection
Livestock to start colonies of lab-reared K. inachus butterflies was supplied by Leshan Shawan Xiong’s Butterfly Garden (Leshan,

China), which has a breeding license. Colonies were maintained at 26–28�C under approximately 70% relative humidity and a

14:10 light:dark cycle. Adults were fed fruit juice or a mixture of honey and alcohol. Larvae of K. inachuswere raised on the host plant

Strobilanthes cusia (Acanthaceae). Female and male individuals were selected to mate at a ratio of 1:1 with access to sufficient food

and host plants for oviposition. Butterfly samples were collected in the field with the permission and assistance of Medog Forestry

Bureau (China), Medog National Natural Reserve (China), Ya’an Forestry Bureau (China), Fengtongzhai National Natural Reserve

(China), Wuzhishan National Natural Reserve (China), and Ruili Forestry Bureau (China) or supplied by Leshan Shawan Xiong’s But-

terfly Garden (Leshan, China), Changde Xiaoyejia Arts & Crafts Co. Ltd. (Changde, China), Wuhan Diezhongdie Creative Culture Co.

Ltd. (Wuhan, China), and Shanghai Qiuyu Biotechnology Co. Ltd. (Shanghai, China) with breeding, collecting or import licenses.

METHOD DETAILS

Sample preparation and sequencing
For Illumina sequencing, genomic DNA from adult butterfly thoracic tissues was isolated using a phenol–chloroform DNA extraction

protocol. Illumina paired-end libraries were constructed using the KAPA Hyper Prep Kit and sequenced on the Illumina HiSeq Xten

platform at Novogene. Raw reads were demultiplexed using sample-specific barcodes. For Nanopore sequencing, genomic DNA

was isolated from adult butterfly thoracic tissues from individuals representing the veined, scrambled, rippled, andmoldywing forms.

The long-read Nanopore sequencing library was prepared using a SQK-LSK109 Ligation Sequencing Kit and sequenced on the

Nanopore promethION platform at GrandOmics. For Hi-C sequencing, genomic DNAwas isolated from adult butterfly thoracic tissue

from a homozygous scrambled individual. Library preparation was performed principally following previously described methodol-

ogies (Belton et al., 2012; Lieberman-Aiden et al., 2009; Ma et al., 2015; Nagano et al., 2015), and the library was sequenced on the

Illumina HiSeq Xten platform at Novogene. Additional Hi-C data from several different individuals were downloaded from the NCBI

Short-Read Archive (SRA) database (accession number PRJNA533504). For RNA-seq and RT–qPCR sampling, individuals with

different wing formswere collected in the late fifth-instar larval stage, the prepupal stage, 24 h after pupation, and 72 h after pupation.

For each developmental stage, we collected four individuals with the PP genotype and four individuals with the VP genotype. Wing

discs were dissected in PBS and stored in RNAlaterTM Stabilization Solution at -80�C. RNA was extracted using TRIzolTM Reagent,

and the Illumina paired-end libraries were constructed using the KAPA RNA Hyper Library Preparation Kit and sequenced on the Il-

lumina HiSeq Xten platform at Novogene.

Genotype calling
Low-quality Illumina sequencing data were filtered from raw reads using Trimmomatic v0.38 (Bolger et al., 2014), and the filtered

reads were mapped to the reference genome of K. inachus (Yang et al., 2020) using Bowtie2-2.3.4.3 (Langmead and Salzberg,

2012) with the parameter–very-sensitive-local. The aligned results were converted from SAM format to BAM format using SAMtools

v1.9 (Li et al., 2009), and were reordered, sorted, and duplicate marked using Picard-tools v1.96 (http://broadinstitute.github.io/

picard/). RealignerTargetCreator and IndelRealigner (McKenna et al., 2010) in GATK 3.7 were used to realign indels, and

UnifiedGenotyper6 (McKenna et al., 2010) in GATK3.7 was used to call SNPs according to the following parameters: heterozygosity

0.05, stand_call_conf 50.0, stand_emit_conf 10.0, and dcov 250. We filtered the sites for downstream analyses according to the

parameters maf 0.05 and Qual 50 or Qual 30 using VCFtools v0.1.17 (Danecek et al., 2011).

Phylogenetic analyses
Weconstructedmaximum-likelihood phylogenetic trees using RAxML (Stamatakis, 2006) with theGTRGAMMAmodel and 100 boot-

strap replicates based on genome-wide SNPs, coding sequence (CDS) regions, de novo-assembled cortex haplotypes, and phased

cortex CDS regions. For the tree of CDS regions, concatenated CDSs of each individual were generated and extracted using

FastaAlternateReferenceMaker (McKenna et al., 2010) in GATK 3.7. For the tree of cortex haplotypes, the outgroup cortex haplotype

of Junonia coeniawas extracted from the reference genome of J. coenia v1.0 (van der Burg et al., 2019), and all the cortex haplotypes

were aligned using LASTZ 1.04.03 (Harris, 2007) with the plain haplotype as a reference according to the parameter –format=maf

–chain. Subsequently, pairwise alignments were merged into a multiple sequence alignment using the roast script of Multiz v11.2

(Blanchette et al., 2004) with a guided topology (((M, P), (S, (R, V))), Jco). The multiple sequence alignment was transformed into

FASTA format using the maf2fasta script of Multiz v11.2 (Blanchette et al., 2004). The cortex haplotype alignment was divided

into partitioned sequence alignments in a 50-kb sliding window, and the 50 kb alignment that included the cortex gene and displayed

strong linkage disequilibrium was used to construct the tree of cortex haplotypes. We also estimated the divergence times of the

genome-wide and cortex haplotype-based phylogenies using PhyTime (Guindon, 2010), with the nodes calibrated according to

the divergence times between Kallima and Junonia (between 31.0033 and 44.768 Mya), Kallimoides and Junonia (between

27.8345 and 40.7399 Mya), and Historis and Kallima (between 37.827 and 54.7998 Mya) (Chazot et al., 2019). The PhyTime results

were further processed using TreeAnnotator (Drummond et al., 2012). All tree images were generated using iTOL (Letunic and Bork,
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2011). We also double-checked phased sequences by PCR using the genotyping primers (see below in the CRISPR/Cas9-mediated

genome editing section) and constructed the cortex haplotype network using the TCS method implemented in PopART (Clement

et al., 2000; Leigh and Bryant, 2015).

Population structure inference
We converted VCF files to BED files using VCFtools v0.1.17 (Danecek et al., 2011) and PLINK v1.90b6.7 (Purcell et al., 2007), and

filtered the data according to the parameters geno 0.20 and maf 0.05 in PLINK v1.90b6.7 (Purcell et al., 2007). Principal component

analysis (PCA) was performed using PLINK v1.90b6.7 (Purcell et al., 2007). Proportions of individual ancestry were inferred using

ADMIXTURE (Alexander et al., 2009) by defining genetic clusters from K = 2 to K = 10.

Population genetic analyses
The genome-wide patterns of genetic differentiation (FST values) and nucleotide diversity (p values) were calculated using VCFtools

v0.1.17 (Danecek et al., 2011) with a block size of 50 kb, and the standard error was calculated using a jackknife approach. For local

regions, a block size of 500 bp was used, and the standard error was calculated using a moving block bootstrap approach (Zhang

et al., 2016). Pairwise linkage disequilibrium (LD) was estimated by calculating the square of the correlation coefficient (r2) using

VCFtools v0.1.17 (Danecek et al., 2011) according to the parameter –plink –thin 200. LD heatmaps were calculated using Haploview

v4.2 (Barrett et al., 2005) according to the parameter minMAF 0.10 and were visualized using LDheatmap (Shin et al., 2006). Prior to

the detection of positive selection, we extracted cortexCDS regions by visualizing BAM files in IGV v2.5.2 (Robinson et al., 2011), and

the raw reads involving cortex CDS regions were extracted and employed to manually assemble the complete CDS using Geneious

v9.1.4 (Kearse et al., 2012). Subsequently, we detected recombination blocks in the cortex CDS alignment using GARD (Pond et al.,

2006) on the Datamonkey webserver (Weaver et al., 2018), which yielded three putative recombination blocks. Positive selection sig-

nals in specific lineages were detected with partitioned sequence alignments using the branch-site model implemented in the

CodeML program within PAML (Zhang et al., 2005). We performed HKA tests (Hudson et al., 1987) to compare the level of cortex

polymorphism to the polymorphism of neighboring genes using sequence data extracted from the reference genome of Vanessa ta-

meamea v1.0 (GenBank: PEHJ00000000.1) for the calculation of interspecific divergence. Genome-wide association studies were

performed for individuals presenting different forms. The different forms were identified and classified using SVMorph (Teng et al.,

2021). The VCF file was first compressed using VCFtools v0.1.17 (Danecek et al., 2011) according to the parameter –thin 200,

and genome-wide association analysis was then performed using PLINK v1.90b6.7 (Purcell et al., 2007) according to the following

parameters: –assoc fisher –allow-no-sex –adjust –allow-extra-chr. The false-discovery rate corrected P values were calculated using

PLINK v1.90b6.7 (Purcell et al., 2007). Genome-wide FST values were also calculated between individuals with different forms in a

block size of 50 kb using VCFtools v0.1.17 (Danecek et al., 2011), and the FST values were standardized into Z scores.

Demographic analyses
We used the pairwise sequentially Markovian coalescent (PSMC) model (Li and Durbin, 2011) and SMC++ (Terhorst et al., 2017) to

infer historical effective population sizes. For PSMC analyses, we generated the diploid consensus sequence of each sample using

SAMtools (Li et al., 2009) and masked bases with a depth lower than a third of the average depth or greater than twice the average

depth. The parameters were set as follows: -N25 -t15 -r5 -p "4+25*2+4+6". For SMC++ analyses, we employed population data to

infer effective population sizes in recent years and applied ‘‘-c 100000’’ to mask the uncalled region. For all the PSMC and SMC++

analyses, we assumed an averagemutation rate of m = 33 10-9 (Keightley et al., 2015) and an average generation time of g = 0.5 years

(Yang et al., 2020).

Demographic parameters, such as population sizes, divergence times, and migration rates, were inferred using the Generalized

Phylogenetic Coalescent Sampler (G-PhoCS ver1.2.3) software (Gronau et al., 2011) with the default settings for a gamma distribu-

tion. To do so, we chose individuals of each population with good sequencing coverage and performed filtering steps for the refer-

ence genome according to Table S3, which yielded 5,638 putative neutral loci in total. Considering the genetic distance in the genus

Kallima, we performed three analyses, focusing on populations and subspecies inK. inachus, populations and subspecies inK. alicia,

and populations in K. incognita and K. paralekta. We estimated possible migration bands twice in multiple independent tests and

calibrated the raw estimates by assuming an average mutation rate of m = 33 10-9 (Keightley et al., 2015) and an average generation

time of g = 0.5 year (Yang et al., 2020). The lower migration rates above 0.003 in two replicates were considered significant, and these

significant migration bands were tested together in full-model analyses. To determine the number of MCMC iterations, we checked

the convergence by visually monitoring the likelihood plots in Tracer v1.7 (Rambaut et al., 2018) to ensure that the MCMC chains

reached an equilibrium distribution. We conducted G-PhoCS analysis with 200,000 MCMC iterations. Migration events were also

inferred using TreeMix (Pickrell and Pritchard, 2012) by assuming zero to eight migration edges.

Habitat suitability modeling
We used the maximum entropy model (Maxent) (Phillips et al., 2006) to evaluate habitat suitability for Kallima butterflies. We down-

loaded the presence data of K. inachus from the Global Biodiversity Information Facility (GBIF) (https://www.gbif.org/), to which we

added our own sample data. The presence data were spatially rarified using SDMtoolbox v2.4 (Brown et al., 2017). We downloaded

19 bioclimatic variables of the 2.5 arc-minute scale (CCSM4) from WorldClim (http://www.worldclim.org/) for the projection of the
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LGM and mid-Holocene periods, and we downscaled the original LIG 30 arc-second data to the 2.5 arc-minute resolution scale to

synchronize the resolution. Subsequently, we masked these climate layers to the area that was reasonably surveyed and removed

highly correlated variables with a Pearson’s correlation coefficient greater than or equal to 0.8. Data formats were transformed using

ArcMap 10.7 (https://desktop.arcgis.com/en/arcmap). Ten replicates with cross-validation were performed for each analysis. Vege-

tation maps and Maxent projection results were overlaid in ArcMap 10.7 (http://www.bridge.bris.ac.uk/resources/Databases/

BIOMES_data; Bigelow et al., 2003; Harrison et al., 2001; Olson et al., 2001; Pickett et al., 2004; Prentice et al., 2000; Ray and Adams,

2001).

Genome assembly and synteny mapping
Low-quality Nanopore sequencing data were filtered from raw reads using Nanofit v2.3.0 (De Coster et al., 2018). De novo genome

assembly was performed using NextDenovo v2.2-beta.0 (https://github.com/Nextomics/NextDenovo), and base errors were further

corrected with Illumina sequencing data using NextPolish v1.1.0 (Hu et al., 2020). Reference-guided genome assembly of the cortex

region ofK. inachuswas performed using Geneious v9.1.4 (Kearse et al., 2012) by combining the de novo-assembled plain haplotype

and the reference genome of K. inachus (Yang et al., 2020). To assemble the cortex haplotypes of heterozygous samples, we did not

perform an Illumina polishing step for Nanopore sequencing data because it could lead to the fusion of different haplotypes and intro-

duce more mistakes relative to the base errors occurring during Nanopore sequencing. To test the reliability of our unpolished

genome assemblies, we aligned Illumina sequencing data from multiple individuals to the de novo-assembled cortex haplotypes.

The results were highly consistent between the cortex haplotypes and the Illumina sequencing reads with the corresponding

genotypes. In addition, we performed haplotype alignment based on two assembled scaffolds of haplotypeP extracted fromdifferent

individuals and observed complete collinearity and a high degree of base identity between the two scaffolds (Figure S4G), suggesting

that the assembled cortex scaffolds obtained from the heterozygous individuals were reliable. Five cortex haplotypes (plain, veined,

scrambled, rippled, andmoldy) were extracted from de novo-assembled genomes and aligned to detect rearrangement breakpoints

using progressiveMauve (Darling et al., 2010) with the default parameters.

Hi-C library data analysis
Hi-C raw reads were aligned to the reference-guided genome assembly of the scrambled haplotype using BWA (Li and Durbin, 2009)

following the Juicer pipeline (Durand et al., 2016b). Normalized Hi-C contact matrices were then generated at several resolutions in

.hic format, and multiple tools, such as the head algorithm (Rao et al., 2014) in Juicer software juicer_tools.1.7.6, the hicFindTADs

algorithm in HiCExplorer software (Wolff et al., 2020), and TADtool (Kruse et al., 2016), were employed for TAD identification. We re-

garded TAD regions detected by all three tools as putative TADs and manually annotated these regions using BLASTX searches

against NCBI’s nr protein database (https://blast.ncbi.nlm.nih.gov/Blast.cgi). For the Arrowhead algorithm, the following parameters

were used: -k KR, -r 25000, –ignore_sparsity. For the hicFindTADs algorithm, Hi-C contact matrices were first converted into .cool

format using hicConvertFormat and TADs were then called with a step size of 40,000 bp. For TADtool, Hi-C contact matrices were

first converted into sparse matrix format with a resolution value of 40 kb, and the insulation score was then calculated to identify

TADs. The Hi-C heatmap and putative TADs were visualized using Juicebox (Durand et al., 2016a) and hicPlotTADs in

HiCExplorer software (Wolff et al., 2020).

Annotation of transposable elements and promoter regions
A transposable element library of K. inachus was constructed based on the reference genome assembly using RepeatModeler

v1.0.11 (http://www.repeatmasker.org/RepeatModeler/). The distribution of transposable elements among different cortex haplo-

types was calculated using RepeatMasker v4.1.1 (http://www.repeatmasker.org) with the default parameters and the TE library

generated by RepeatModeler. The promoter regions were annotated based on the published results of chromatin accessibility

profiling in K. inachus (Wan et al., 2021).

RT–qPCR analyses
Total RNA was diluted to 200 ng/mL and treated with the TURBO DNA-free� Kit (Invitrogen) to remove the remaining genomic DNA.

cDNA was generated from total RNA using the HiScript cDNA Synthesis Kit (Vazyme). RT–qPCR was performed in a 20-mL system,

with 50 ng diluted cDNA and forward and reverse primers at 0.4 mM. Primers were designed to span the cortex intron (F:

AGTGGGGAGAGGGTCGTAG, R: CCTCGTCCAAGTAAACGGGAA), and the target products were smaller than 200 bp. We also

analyzed the expression of the reference gene ef1a for normalization (F: GCTGAGCGTGAACGTGGTAT, R: GACGATGAGCAC

GGCGCAAT). The reactions were run on a Roche LightCycler 96 detection system using TB Green Premix Ex Taq II (Tli RNaseH

Plus) (Takara).

CRISPR/Cas9-mediated genome editing
We designed single-guide RNAs (sgRNAs) and evaluated their specificity using sgRNAcas9 v3.0 (Xie et al., 2014) to search genomic

regions against the reference genome of K. inachus (Yang et al., 2020) for GN19NGG or N20NGG sequences. We performed CRISPR/

Cas9 mutagenesis assays following previously described methods of CRISPR/Cas9 genome editing in Lepidoptera (Bassett et al.,

2013; Li et al., 2015; Zhang and Reed, 2017). We generated sgRNAs by in vitro transcription using the MAXIscript T7 kit (Life
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Technology, Cat No. AM1314) or RiboMAX� Large-Scale RNA Production Systems (SP6 and T7) (Promega, Cat No. P1280, P1300).

Subsequently, we performed themicroinjection of sgRNAs and EnGen�SpyCas9NLS (NEB, Cat No.M0646M) to collected butterfly

eggs between 0.5 h and 1 h or between 1 h and 2 h after oviposition. Injected eggs were placed in transparent plastic boxes until

hatching and were fed host leaves (S. cusia) until the third-instar stage. The injected larvae were transferred to the host plant

S. cusia until emergence. The average hatching rate with the deleterious cortex KOs was 30.69%. For genotyping, we extracted

genomic DNA from individual wing tissues showing mutant phenotypes using the TransDirect� Animal Tissue PCR Kit (Trans, Cat

No. AD201-01) or a phenol–chloroform protocol and performed PCR using genotyping primers flanking the sgRNA target region

(CT-CRISPR-F: CTATTTGGCATAAGCAGGT, CT-CRISPR-R: GATTCTAGTTGTCTCACTCCA). Mosaic mutants were identified by

comparing the sizes of the obtained PCRproducts via standard agarose gel electrophoresis and by comparing sequences via Sanger

sequencing. To identify small indels in the sgRNA target regions, PCR products were cloned into the T-Vector pMD19 (Takara, Cat

No. 3271) or the pEASY vector (TransGen Biotech) and sequenced. Wing phenotypes were photographed using a scanner (HP

LaserJet Pro M227fdw) or a digital camera (Canon 70D or Nikon DS-Ri2) under a microscope (Nikon SMZ18).

Transcriptome analyses and assembly
Low-quality Illumina reads were filtered from the raw sequence data using Trimmomatic v0.38 (Bolger et al., 2014), and the filtered

reads were mapped to the reference genome of K. inachus (Yang et al., 2020) using STAR v2.7.1a (Dobin et al., 2013). Differentially

expressed genes were called using RSEM v1.3.1 (Li and Dewey, 2011) and DESeq2 (Love et al., 2014), and the results were FDR

adjusted. De novo transcriptome assembly was performed using Trinity v2.8.5 (Grabherr et al., 2011) with default parameters.

In situ hybridization
In situ hybridization (ISH) assay for cortex was performed principally following a previously described procedure with at least three

biological replicates (Martin et al., 2012). ISH templates were amplified by PCR using primers for cortex (CT-F: ATTTAGGTG

ACACTATAGAATAGCCAGCTGTGATGGATCTGT, CT-R: AATTAATACGACTCACTATAGGGAGGGTCAAACTTGCAGCACT), and a

T7 or SP6 promoter sequence was attached. For sense and antisense riboprobe synthesis, in vitro transcription was performed using

RiboMAX� Large-Scale RNA Production Systems (T7 and SP6) (Promega) supplemented with Digoxigenin-11-UTP (Roche Applied

Science). The sense probes were used as the negative control, which showed no effect (Figure S6A). Given that the fifth-instar larval

stage is the developmental time point associated with the expression of genes involved in the production of complex wing patterns,

such as eyespots in multiple nymphalid butterflies (Oliver et al., 2012; Reed and Serfas, 2004), individuals were sampled in the fifth-

instar larval stage, and their wing discs were dissected in phosphate-buffered saline (PBS). Tissues were fixed in 4% paraformalde-

hyde (PFA) in PBS for 30 min, washed in cold phosphate-buffered saline containing 0.01% Tween 20 (PBST), and treated with

25 mg/mL proteinase K. Wing discs were freed from their peripodial membrane and postfixed in 4% PFA for 20 min. After washing

in cold PBST, wing discs were gradually transferred to standard hybridization buffer, prehybridized for 1 h at 64�C, and incubated in

standard hybridization buffer containing a riboprobe at 30 ng/mL for 40 h at 64�C. For secondary detection of the riboprobe, wing

discs were blocked in Tris-buffered saline containing 0.01% Tween 20 (TBST) and 1 g/L BSA and subsequently incubated with a

1:4000 dilution of anti-digoxigenin alkaline phosphatase Fab fragments (Roche) at 4�C for 3 h or overnight. Wing discs were washed

once in cold BSA buffer, washed ten times in cold TBST and finally stained with BMPurple (Roche) for 4–8 h. For tissue clearing, wing

discs were gradually placed in ethanol and xylene, and the redundant tissue was carefully removed. For imaging, wing discs were

transferred back to PBST, mounted in PBS containing 60% glycerol, and imaged using a digital camera (Nikon DS-Ri2) under a mi-

croscope (Nikon SMZ18).

Population genetics simulations
To investigate the driving forces leading to the current frequencies of cortex haplotypes, we developed a population genetics model

adapted from Zhang et al. (2017) and Villanea et al. (2015) by incorporating negative frequency-dependent selection (NFDS). In this

model, the fitness (w) of a genotype was negatively correlated with its frequency (f), given the strength of NFDS denoted as z, and the

additional beneficial or deleterious effects of a genotype were denoted as a. Our model also comprised a random sampling proced-

ure to simulate the perturbation caused by genetic drift. Therefore, the fitness of each genotype could be calculated as follows:

wPP = aPPð1 � zfPPÞ (Equation 1)
wSS = aSSð1 � zfSV � zfSP � zfSSÞ (Equation 2)
wSP = aSPð1 � zfSV � zfSP � zfSSÞ (Equation 3)
wSV = aSVð1 � zfSV � zfSP � zfSSÞ (Equation 4)
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wVP = aVPð1 � zfVV � zfVPÞ (Equation 5)
wVV = aVVð1 � zfVV � zfVPÞ (Equation 6)
wMP = aMPð1 � zfMPÞ (Equation 7)
wMS = aMSð1 � zfMSÞ (Equation 8)
wMV = aMVð1 � zfMV Þ (Equation 9)
wMM = 0 (Equation 10)
wRP = aRPð1 � zfRPÞ (Equation 11)
wRS = aRSð1 � zfRSÞ (Equation 12)
wRV = aRVð1 � zfRV Þ (Equation 13)
wMP = aMPð1 � zfMPÞ (Equation 14)
wRR = 0 (Equation 15)
wMR = aMRð1 � zfMRÞ (Equation 16)
with P, S, V,M, and R denoting five cortex haplotypes. Given that
 we did not observe individuals with MM or RR genotypes and we

only obtained limited individuals with theMR genotype from lab crossings, we set the fitness ofMM orRR genotypes as null. We used

p, s, v, m, and r to denote the initial frequencies of haplotypes P, S, V, M, and R, respectively. Therefore, the changes in the fre-

quencies of the five haplotypes (p’, s’, v’, m’, and r’) and the mean fitness wmean could be calculated as follows:

p0 =
ðp2wPP + spwSP + vpwVP +mpwMP + rpwRPÞ

wmean

(Equation 17)
s0 =
ðs2wSS + spwSP + svwSV +mswMS + rswRSÞ

wmean

(Equation 18)
v0 =
ðv2wVV + vpwVP + svwSV +mvwMV + rvwRVÞ

wmean

(Equation 19)
m0 =
ðmpwMP +mswMS +mvwMV +mrwMRÞ

wmean

(Equation 20)
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r 0 =
ðrpmRP + rswRS + rvwRV +mrwMRÞ

wmean

(Equation 21)
wmean =
�
p2wPP + s2wSS + v2wVV + 2spwSP + 2vpwVP + 2mpwMP + 2rpwRP + 2svwSV

+ 2mswMS + 2rswRS + 2mvwMV + 2rvwRV + 2mrwMR

�
(Equation 22)

We first performed preliminary tests including only two original haplotypes, P and S, to repeat the modeling procedure presented

by Zhang et al. (2017) by testing z values ranging from 0 to 0.9 to simulate scenarios from neutral drift to strong selection; Ne values

ranging from 100 to 100,000 to simulate the effects of genetic drift; a values ranging from 1 to 5 to simulate different levels of advan-

tage; and different sets of initial allele frequencies. Each test included ten separate runs. The preliminary tests indicated that the

combination of z and a determined the state of equilibrium (Data S2). Therefore, we chose a moderate strength of NFDS (z = 0.2),

a relatively large population size according to the estimated population size (Ne = 10,000), and a sufficient generation time to fix a

derived haplotype (generations = 400) for formal tests. According to the phylogenetic results (Figures 6A–6C), we described four

separate phases of the evolution of leaf wing polymorphism, assuming that chromosomal inversion originated later in each clade.

Phase 1 included two original haplotypes, P and S, assuming S to be a derived haplotype according to dominance-recessiveness;

Phase 2 involved the origin of R due to chromosomal inversion occurring in S and included P, S, and R; Phase 3 involved the origin of

M and includedP,S,R, andM; and Phase 4 involved the origin ofV due to chromosomal inversion occurring inM and includedP,S,R,

M, and V. Each phase included multiple tests, and each test included ten separate runs in which the specified haplotypes reached

equilibrium. The results of the phase-by-phase simulation showed that NFDS is the main driving force of the maintenance of the five

haplotypes, in combination with the additional benefits or disadvantages of different genotypes (Figure S6; Data S2).

Genotyping
We extracted genomic DNA from butterfly leg tissues using a HiPure Insect DNA Kit (D3109-02). We identified different cortex hap-

lotypes by amplifying genomic DNA fragments using PCR and performing Sanger sequencing mainly using universal primers de-

signed for exon 6, including CT-exon6F (AGGCT-GTTCATGGGGAAATG) and CT-exon6R (CCACGTTAGTAACATTACGACAGC).

We also designed haplotype-specific primers to validate the genotyping results, including CT-V-F (TTCGCGGTATACAAGGC

CAG) and CT-V-R (GCAATTCCTTTGACGAGGCG) for haplotype V, CT-E2-F (CGTAATCGTGTTGATAGATTCGTAG) and CT-E3-R

(GCTGTAAGTAGG-TAAGTCTAGGA) for haplotype P, and CT-R-F (GTATGCAAGGCCAGGGTCTAA) and CT-R-R (GTATGCAA

GGCCAGGGTCTAA) for haplotype R.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical details and methods as well as sample sizes are indicated in the figure legends or methods. Statistical analyses were

performed using R, Excel, PLINK, DEseq2, or custom codes. Data are presented as mean ± SEM and are noted in the figure legends

and tables. For phylogenetic analyses, a bootstrap approach was used and bootstrap support values are noted in the figures. For

population genetic analyses, standard errors were calculated using a moving block bootstrap approach or jackknife approach. A

chi-squared test, Fisher’s exact test, Student’s t-test, or Wilcoxon rank-sum test was used to determine statistical significance,

and significance is denoted as * (P < 0.05), ** (P < 0.01), or *** (P < 0.001) in the figures and tables. For the genome-wide association

studies and differential expression analyses, P values were FDR adjusted using the Benjamini-Hochberg method.
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Figure S1. Phylogenies of nymphalid butterflies, related to Figure 1

(A) A maximum-likelihood phylogenetic tree of 35 species constructed from genome-wide SNP data.

(B) A maximum-likelihood phylogenetic tree of 84 samples constructed from 5,638 putatively neutral loci. Leaf-mimicking butterflies are highlighted in green in

(A) and (B).

(C) A maximum-likelihood phylogeny constructed for 34 Kallima samples based on concatenated genome-wide CDS.
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Figure S2. Demographic history inference and ecological niche modeling for Kallima butterflies, related to Figure 2

(A) Historical effective population sizes inferred from population data of eight Kallima individuals using SMC++ with a mutation rate of 3 3 10�9 and an average

generation time of 0.5 years. The population sizes of most species have remained stable for several hundred thousand years.

(B) Historical effective population sizes inferred with PSMC from 13 individual genomes of different Kallima species, including K. i. chinensis from Ya’an, K. i.

chinensis from Leshan, K. i. chinensis from Kunming, K. i. chinensis from Nanping, K. i. formosana from Taizhong, K. a. alicia fromWuzhishan, K. a. shizuyai from

Medog,K. a. alicia from Laibin,K. incognita fromRuili,K. incognita fromMedog,K. paralekta from Java,K. l. amplirufa fromMalaysia, andK. knyvettii fromMedog,

where the pink shadow represents 100 bootstrap replicates.

(C) Habitat information and ecological niche models of Kallima butterflies. Ecological niche modeling was performed using Maxent, and suitable habitat was

predicted with an overlay of vegetation information. The color scheme indicates the probability of occurrence from high (red) to low (blue). The current predicted

habitat is covered by tropical and subtropical moist broadleaf forests. The habitat of Kallima butterflies was fragmented during the LGM. During the mid-Ho-

locene, warm temperate rainforest and tropical evergreen broadleaf forest may provide a suitable ecological habitat.

(D) All possible migration bands were tested in two repeated analyses using G-PhoCS. Migration bands were tested among populations of K. alicia subspecies

and K. i. chinensis, among populations of K. i. chinensis, K. i. formosana, and K. a. shizuyai, and among populations of K. incognita, K. paralekta, and K. l. amplir-

ufa. Each bar represents the 95% highest posterior density of the mean migration rate.
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Figure S3. Inference of phylogenies and migration among Kallima species using Treemix, related to Figure 2

In each case, a maximum likelihood tree was inferred among K. inachus, K. alicia, K. incognita, and K. paralekta species or populations with the outgroup species

K. limborgii amplirufa based on genome-wide allele frequency data. We set the linkage disequilibrium threshold to 0.5 for each 50 kbwindow in the input data and

assumed zero to eight migration edges. The residual fit matrix was also generated in each case by dividing the residual covariance of pairwise populations by the

average standard error using Treemix. Residuals above zero indicate populations that are closely related and could be candidates for admixture events. Kin-Y:

K. i. chinensis (Ya’an); Kin-K: K. i. chinensis (Kunming); Kin-L: K. i. chinensis (Leshan); Kin-T: K. i. formosana (Taizhong); Kal-W: K. a. alicia (Wuzhishan); Klim: K. l.

amplirufa; Kinc-M: K. incognita (Medog); Kpa-J: K. paralekta (Java).
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Figure S4. Genome-wide characterization of the leaf wing polymorphism and scaffolding of cortex haplotypes, related to Figure 3

(A) Forewing images of plain, veined, rippled, moldy, and scrambled forms were used to train a support vector machine (SVM) model for GWAS sample

classification.

(B) A normalized confusion matrix was calculated to evaluate the accuracy of the SVM classification, indicating good performance.

(legend continued on next page)
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(C) Genome-wide FST values were calculated based on the full-genome sequences of veined versus scrambled forms (red), plain versus scrambled forms (dark

green), plain versus veined forms (light green), moldy versus plain forms (yellow), and rippled versus plain forms (orange) in 50-kb sliding windows and are

standardized into Z scores. The major peaks of ZFST values are all located on chromosome 26, consistent with the GWAS results.

(D and E) The results of the original GWAS analyses performed for plain versus scrambled forms using an uncorrected reference genome. The largest peak in the

original GWAS result is also located on chromosome 26 (D) but contains a scaffolding error of approximately 4.02–4.45 Mb in the uncorrected reference

genome (E).

(F) The Hi-C scaffolding process separated contig 23 into two fragments and concatenated them in a false order of inversion, which led to the scaffolding error.

(G) Validation of de-novo-assembled cortex haplotype scaffolds. Two assembled scaffolds of the plain (P) haplotype were extracted from the de novo assemblies

of two heterozygous individuals I1 (VP) and R1 (RP). The alignment shows complete collinearity and a high degree of base identity between them.
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Figure S5. Alignments and signatures of cortex haplotypes, related to Figure 4
(A) The de-novo-assembled plain (P), veined (V), moldy (M), rippled (R), and scrambled (S) cortex haplotypes were aligned, with the orthologous haplotype of

Junonia coenia as the outgroup (Jco). The alignment shows various sequence identities in different regions of the cortex haplotypes.

(B) The cortex CDS regions of Kallima inachus (R, S, P, V, andM) and Junonia coenia (Jco) were aligned, and potential recombination breakpoints were inferred

using GARD (Genetic Algorithm for Recombination Detection).

(C) Positive selection analyses of different branches were performed using the PAML (Phylogenetic Analysis by Maximum Likelihood) branch-site model, and

haplotype M shows a putative signature of positive selection.

(D) A nonsynonymous substitution (K96H) in the CDS region of M is significantly subject to positive selection according to the branch-site model.

(E) Two Hi-C heatmaps on chromosome 26 were constructed using Hi-C data generated from several individuals with P, S, and R haplotypes and one homozy-

gous (SS) individual against an assembled reference genome containing the S haplotype. The putative TAD-containing cortex and neighboring genes are labeled

with a gray dotted square in each map. The heatmap generated from mixed individuals shows lower alignment coverage in the cortex region.

(F) Percentages of repetitive sequences in cortex haplotypes.

(G) The gene structure of cortex related to the P and V haplotypes. The transcripts with proximal promoters are shown in green rectangles, and the transcripts with

the distal promoter and additional exons based on RNA-seq data (blank rectangle) or sequence homology (dashed rectangle) are shown in blue rectangles. The

predicted distal promoter of the V haplotype is not shown because it is outside the inversion region and in the opposite orientation. The sgRNA target sites

employed for the somatic mutagenesis of cortex are indicated by red arrows. Indels were identified by PCR, molecular cloning, and Sanger sequencing. Cortex

sgRNA targets are highlighted in blue and PAM sequences are highlighted in purple. TSS, transcription start site.

(H) We observed several mutant phenotypes in cortex-mKOmutants including different levels of scale pigmentation fading (four mutants) and irregular eye spots

(three mutants). An additional dorsal pattern is shown for whole wings of a cortex-mKO mutant with faded scale pigmentation on the dorsal side (indicated by

green arrows).
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Figure S6. Tracing the evolution of leaf wing polymorphism, related to Figures 3, 5, and 6

(A) In situ hybridization of cortex and the negative control in fifth-instar larval-stage wing discs of individuals with the PP genotype, showing a consistent spatial

correlation with the patterns of adult leaf wings in the marginal region under the framework of the nymphalid ground plan (indicated by red arrows).

(B) The distribution of intron lengths in the cortex gene and neighboring genes. The intron lengths of cortex and neighboring genes were calculated in five

haplotypes, with high variation observed in cortex and low variation observed in the neighboring genes, HEATR2 and 3842.

(C) cortex haplotype frequencies, phenotype frequencies, and genotype frequencies calculated in a natural population of K. inachus.

(D) Gene network of phased cortex CDS regions in the genus Kallima.

(E) The real genotype frequencies and the distribution of genotype frequencies in the best-fit population genetic simulation.

See also Data S2 in the supplemental information.
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