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How cotton fibers elongate: a tale of linear cell-growth mode
Yong-Mei Qin and Yu-Xian Zhu
Cotton fibers (cotton lint) are single-celled trichomes that

differentiate from the ovule epidermis. Unidirectional and fast-

growing cells generally expand at the dome-shaped apical

zone (tip-growth mode); however, previous studies suggest

that elongating fiber cells expand via a diffuse-growth mode.

Tip-localized Ca2+ gradient and active secretary vesicle

trafficking are two important phenomena of tip-growth.

Recently, a high Ca2+ gradient is found in the cytoplasm of fast-

elongating cotton fiber cells near the growing tip. Several

protein coding genes participating in vesicle coating and

transport are highly expressed in elongating fiber cells. Taken

together with the observation that ethylene acts as a positive

regulator for cotton fiber and several Arabidopsis tissues that

are known to elongate via tip growth prompted us to propose a

linear-growth mode for similar cell types.
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Introduction
Cotton fiber is the most prevalent natural raw material

used in the textile industry and serves as one of the

mainstays for the global economy. Cotton belongs to

the genus Gossypium in the family Malvaceae. It is one

of the angiosperm species in which the formation of

polyploidy through genome-wide duplications occurred

�1.5 million years ago [1,2,3�]. There are four cultivated

species: G. arboreum, G. herbaceum, G. hirsutum, and G.
barbadense (with representative G. arboretum and G. hirsu-
tum plants at the time of flowering shown in Figure 1).

The first two are diploids (2n = 26) and the last two are

allotetraploids (2n = 52). Upland cotton (G. hirsutum)

fibers generally grow to about 30–40 mm in length and

15 mm in thickness at full maturity and account for 90% of

fiber production in the world [4,5]; an additional 5–8% is

produced from G. barbadense.
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Fiber development consists of four overlapping stages

(initiation, elongation, secondary cell wall biosynthesis,

and maturation), which are defined on the basis of the

number of days post-anthesis (dpa) [6,7�]. Fiber initiation

is characterized by trichome protrusion and enlargement

on the epidermal surface that occurs from 3 days before

anthesis to 3 dpa. Only 25–30% of epidermal cells differ-

entiate into the mature long-fiber cells commonly known

as cotton lint, whereas others may develop into short

fibers called fuzz (5–6 mm in length). In the developing

fiber, initiation and elongation proceed nearly synchro-

nously on the same ovule. During the most active

elongation period (5–25 dpa), vigorous cell expansion

with peak growth rates of >2 mm/day is observed in

upland cotton, coupled with cell expansion and a specific

set of metabolite syntheses. Cellulose synthesis domi-

nates the period of secondary cell wall biosynthesis (20–
45 dpa), which is followed by a dehydration period (45–
50 dpa) to produce mature lint fibers. Here we focus on

recent advances pertinent to the second growth stage and

try to clarify the mode of fiber cell elongation.

Special metabolic processes during cotton
fiber elongation
Cotton fiber serves as an excellent model system for un-

derstanding mechanisms of cell elongation and differen-

tiation [6,8��,9�]. Rapid elongation of fiber cells is

associated with cell turgor pressure, plasmodesmatal regu-

lation, and transporter activities [10,11]. Large-scale tran-

scriptome analysis revealed that during fiber cell initiation

and elongation, several metabolic pathways are specifically

and significantly up-regulated [8��,12�,13–15]. On the basis

of the systematic microarray hybridization of 12,233 Uni-

ESTs obtained by sequencing 102,000 expressed

sequence tags (ESTs) from a cotton ovule cDNA library,

ethylene biosynthesis and signaling are the most highly up-

regulated biochemical pathway [8��]. Conversion of S-

adenosyl-L-Met (SAM) to 1-aminocyclopropane-1-car-

boxylic acid (ACC) and the oxidative cleavage of ACC

to produce ethylene, which are catalyzed by ACC synthase

(ACS) and ACC oxidase (ACO), respectively, comprise the

two key steps in ethylene biosynthesis. Transcripts of three

GhACOs are specifically accumulated in 10-dpa fibers as

compared with 10-dpa ovules. Exogenously applied ethyl-

ene stimulates fiber growth, whereas L-[2-aminoethoxyvi-

nyl]-glycine (AVG), an ethylene biosynthesis inhibitor,

inhibits fiber growth [8��].

The biosynthesis of saturated or monounsaturated very-

long-chain fatty acids (VLCFAs, fatty acids > C18) —

which are precursors of sphingolipids, seed triacylglycer-

ols, suberins, and cuticular waxes [16] — has important
www.sciencedirect.com
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Figure 2

A schematic drawing of (a) diffuse-growth, (b) tip-growth, and (c) linear

cell-growth modes. (a) and (b) are modified from [26�,28��]. Most

obviously, in tip growth, there is a zonation of mitochondria, Golgi, and ER

in the subapical region of the cells with an obvious accumulation of

secretory vesicles. Also, the microtubules are arranged in bundles along

the longitudinal axis of the cell. In diffuse growth, no clear-cut zonation is

evident, and the microtubules are oriented transversely to the growth axis.

In the linear cell-growth mode, the microtubules are oriented transversely

to the growth axis only in those parts of the cell with secondary cell wall

deposition. High levels of Ca2+, ROS, and even secretory vesicles (as

shown by up-regulated gene expression) are observed in the tip of the

apical zone, which is normally associated with tip growth. The existence of

vertical microtubule bundles and actin meshwork, as indicated by two

question marks, in the apical zone of cotton fiber cells and other related

cell-types with a common linear cell-growth mode has not been

experimentally verified. Suc, sucrose; Cel, cellulose.

Figure 1

Phenotypes of the two cultivated Gossypium species. (a) G. arboreum; A

diploid cotton that can grow more than 2 m so that it is nick-named ‘tree

cotton’. (b) G. hirsutum; An allotetraploid cotton that produces more

than 90% of the world’s commercial cotton lint. Bars = 10 cm.
roles in plant growth and development [17�,18�,19��]. It

has also been speculated that free fatty acids or their

derivates may serve directly as signaling molecules in

plants. Fast-elongating fiber cells contain three to five

times the amount of VLCFAs (from C20 to C26) and a

higher amount of unsaturated fatty acid (a-linolenic acid:

C18:3) than do ovules [19��], consistent with previous

analyses of cotton lipids [20�]. VLCFAs may promote

fiber cell elongation by activating ethylene synthesis

[19��]. The inhibitory effect of exogenous acetochlor,

an inhibitor of VLCFA biosynthesis, on fiber cell growth

is reversed by adding ethylene into the ovule culture

medium, indicating that VLCFAs or VLCFA derivates

may exert their functions by modulating ethylene bio-

synthesis. Twenty-one different KCS genes encoding the

first and rate-limiting step in VLCFA biosynthesis are

found in the Arabidopsis genome, with discrete tissue-

specific, temporal-specific or spatial-specific expression

patterns that reflect its multiple roles in plant growth and

development [21]. A study of GhFAD2, which encodes a

desaturase that introduces a double bond between car-

bons 12 and 13 of monounsaturated oleic acid to form

linoleic acid, suggests that particular unsaturated fatty

acids may be required to support the specific membrane

structure required at the time of fast fiber cell elongation

[22]. VLCFA biosynthesis also affects cell growth in

Arabidopsis and embryo development in maize [17�,23].

Experimental evidence supporting the diffuse-
growth mode for fiber cells
Plant cells expand via either diffuse growth or tip growth

(Figure 2a and b); the mode of cotton fiber cell elongation

has not been definitively established and is still a topic of

argument for scientists working in this field [6]. Typically,

unidirectional and fast-growing cells such as pollen tubes,

root hairs, leaf trichomes, and fungal hyphae follow a tip-
www.sciencedirect.com
growth pattern that confines expansion to the dome-

shaped apical zone. Rapidly elongating fiber cells, how-

ever, seem to expand via a diffuse-growth mode

(Figure 2a) according to the following observations. First,

organelle zonation does not occur in the tips of elongating

cotton fiber cells; scanning electron microscopy and trans-

mission electron microscopy performed on 2-dpa cotton

ovules using a rapid freeze-fixation and freeze-substi-

tution protocol revealed that the apical part of a fast-

growing fiber cell entirely lacks organelle zonation. No
Current Opinion in Plant Biology 2011, 14:106–111
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secretory vesicles accumulate in this region, indicating

that the addition of new wall material for surface expan-

sion may not be restricted to the apex of the cell [4].

Second, the cortical microtubules and the newly depos-

ited cellulose microfibrils are transversely oriented with

respect to the growth axis in fiber cells, which provides

greater resistance to radial expansion than to longitudinal

expansion [24]. Thus, in response to increased turgor

pressure, fibers elongate perpendicular to the orientation

of cellulose microfibrils, leading to unidirectional out-

growth from the epidermis of the developing ovule. In

a tip-growing cell such as the pollen tube, microtubules

are arranged in bundles parallel to the growth axis and are

absent from the apical dome (Figure 2b).

Actin filaments, which are the main components of micro-

filaments, play an important role in cytoskeleton main-

tenance by supporting essential processes such as

cytoplasmic streaming, organelle orientation and intra-

cellular trafficking, and vesicle secretion [25]. They are

arranged as long bundles along the length of cells during

tip growth and are arranged randomly during diffuse

growth [4,26�]. In addition, they form a meshwork in

the subapical region of tip-growth cells that is not found

in fiber cells [24]. This actin meshwork is suggested to

facilitate vesicle transport and docking within the apex to

prevent large organelles from entering the apical region,

and it is required for producing the so-called ‘clear zone’

in the tip. Disruption of the actin cytoskeleton by Rac/

Rop GTPase overexpression in Arabidopsis pollen tubes

converts the typical polar growth into isotropic growth

[25].

Data that support the tip-growth mode
Polar growth that is due to localized vesicle targeting and

exocytosis to the growth site is termed tip growth

(Figure 2b), which is a common phenomenon in all

eukaryotic kingdoms. The establishment of tip growth

requires a tip-high Ca2+ gradient, a polarized actin cytos-

keleton, and tip-directed vesicle trafficking [27]. In the

subapical region of a tip-growth cell, the endoplasmic

reticulum (ER), Golgi body, and mitochondrion content

is characteristically high. Studies of tip-growth mechan-

isms in pollen tubes have focused on three connected

aspects: cytosolic calcium gradient, the production of

reactive oxygen species (ROS), and tip-localized dynamic

Rho GTPase signaling [28��]. A large number of genes

implicated in vesicle coating and trafficking, such as

syntaxin, clathrin, and vesicle transport SNARE, are

overexpressed throughout various stages of fiber cell de-

velopment, indicating their importance in maintaining

the rapid growth of this unique cell type [29��,30].

Calcium-mediated signal transduction plays crucial roles

in a wide array of growth and developmental processes

and is especially important in tip growth. In plants, the

temporal and special changes in cellular Ca2+ concen-
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trations are transmitted through several calcium sensors

including calmodulins (CaMs), calcium-dependent

protein kinases, and calcineurin B-like proteins. A highly

elevated Ca2+ concentration gradient is observed in the

tips of rapidly elongating root hairs but not in non-grow-

ing root hairs [31]. Likewise, when in vitro-cultured

elongating fiber cells are incubated with the calcium

indicator Fluo-3/AM, significant Fluo-3-fluorescence is

observed in the cytoplasm of cotton fiber cells near the

growing tip. Obvious inhibition of fiber growth occurs

when cotton ovules are cultured in the presence of the

CaM antagonist TFP or in the absence of exogenous Ca2+

ions [32], indicating that Ca2+ influx to the fiber tips is

required for sustaining fast cell elongation.

ROS include the superoxide radical (O2
�), hydrogen

peroxide (H2O2), and the hydroxyl radical (�OH). As

visualized by the 20,70-dichlorodihydrofluorescein diace-

tate staining method, a significant ROS burst occurs at the

time of fiber initiation and early elongation [33]. Addition

of the NADPH oxidase inhibitor DPI or the peroxidase

inhibitor SHAM to the ovule culture medium inhibits

ROS production with simultaneous suppression of fiber

elongation [33]. Transcripts of GhPOX1, which encodes a

class III plant peroxidase involved in oxidoreductions of

H2O2, predominantly accumulate in fast-elongating

fibers, suggesting that class III peroxidase activities are

involved in fiber growth, probably by mediating ROS

content [33]. Another H2O2 scavenging enzyme, ascor-

bate peroxidase (APX), important for maintaining the

cellular ROS concentration, is also reported to play a role

during cotton fiber growth. Exogenous H2O2 or ethylene

stimulates GhAPX1 expression and increases total APX

activity, which leads to extended fiber cell elongation

[34]. A study of the root hair mutant rhd2, which is

defective in root hair elongation, provides convincing

evidence that ROS generated by NADPH oxidase

regulate Ca2+ channels localized on root hair tips

[35��]. The production of high levels of ROS in transgenic

Arabidopsis plants by epidermis-specific expression of

FAE1, an ortholog of the KCS family, leads to the death

of trichome cells by seriously damaging cell membranes

[36�].

Silencing of fiber-preferential GhACTIN1 inhibits fiber

cell elongation by reducing the amount of F-actin in the

cell, suggesting that F-actin arrays are crucial for fiber

elongation in a fashion similar to what has been reported

for Arabidopsis root hair growth [37,38�]. GhRac1 —

which encodes Rac/Rop GTPase — is highly expressed

during the fast fiber elongation stage [39�], and GhRac9
and GhRac13 are highly expressed during the transition

stage between primary and secondary cell wall synthesis,

suggesting that Rho family GTPases may regulate cell

polarity through cytoskeleton organization and vesicle

transport during fiber growth, similar to the mechanism

proposed in Arabidopsis [28��].
www.sciencedirect.com
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Figure 3

Signaling pathway for the linear cell-growth mode. Ethylene plays a key

role in fiber growth [8��]. VLCFAs promote fiber growth by activating

ethylene biosynthesis [19��], whereas ethylene stimulates pectin

biosynthesis and scaffold establishment [40��]. Ca2+, CPK, and ROS are

involved in fiber cell, Arabidopsis root, and root hair growth [32–34,35��].

The importance of Sus was elaborated in [44��]. CPK, Ca2+-dependent

protein kinase; Sus, sucrose synthase.
Experiments that support a common linear
cell-growth mode mediated by the ethylene
pathway
Recently, nucleotide sugar metabolism was reported to

be the most significantly up-regulated biochemical pro-

cess during fiber elongation on the basis of comparative

proteomic and bioinformatic analyses [40��]. Ethylene

may act as a positive regulator for cotton fiber cell

elongation as well as for Arabidopsis root hair, apical

hook, and hypocotyl development [8��,41]. Several

enzymes, including UDP-4-keto-6-deoxy-d-glucose

3,5-epimerase 4-reductase (UER), UDP-D-glucose pyr-

ophosphorylase (UGP), and UDP-D-glucose dehydro-

genase (UGD), which are potentially involved in

pectic cell wall polysaccharide biosynthesis, are specifi-

cally accumulated in wild-type samples in an ethylene-

dependent or lignoceric acid-dependent way, suggesting

that these two compounds may promote fiber elongation

by modulating the production of cell wall polymers.

When added exogenously to ovule culture medium,

UDP-L-rhamnose (UDP-Rha), UDP-D-glucuronic acid

(UDP-GlcA), or UDP-D-galacturonic acid (UDP-GalA)

promotes significant fiber growth. The short root hairs of

Arabidopsis uer1-1 and gae6-1 mutants, which lack the

ability to synthesize UDP-Rha and UDP-GalA, respect-

ively, are complemented by adding the specific pectin

precursor to the growth medium. Wild-type root hair

lengths are observed in both cut1 and ein2-5 Arabidopsis

mutants when both types of the pectin precursors, UDP-

Rha and UDP-GalA, are used in a chemical complemen-

tation assay [40��]. A mutation in the Arabidopsis Rab

GTPase RABA4D disrupts normal pollen tube growth by

altering the pattern of pectin deposition so that it is no

longer present exclusively in its growing tip [42��]. These

results indicate that ethylene and C24:0 may promote

Arabidopsis root hair growth and, in a similar manner,

cotton fiber growth by activating the pectin biosynthesis

network, and the pectin layer may serve as a scaffold to

support secondary cell wall biosynthesis and cell

elongation (Figure 2c).

Exogenously applied C24:0 significantly increases the

lengths of the main root, lateral roots, and root hairs of

Arabidopsis seedlings [19��]. In cotton, VLCFAs act

upstream of ethylene biosynthesis because the acetochlor

inhibition of fiber elongation is reversed by exogenous

ethylene, whereas VLCFAs do not revert the inhibitory

effect of AVG in the culture medium [19��]. QRT-PCR

analysis reveals also that genes in ethylene biosynthesis are

up-regulated very rapidly upon addition of C24:0 in the

medium, whereas ethylene application has little effect on

the expression of VLCFA biosynthesis genes [19��]. A

schematic model that depicts the biochemical pathway

that leads to fiber cell elongation is proposed in Figure 3.

The connection between ethylene signaling, plant cell wall

biosynthesis, and elongation is also supported by the find-

ing that the Arabidopsis root cell expansion defect in the
www.sciencedirect.com
fei1 fei2 mutant is suppressed by inhibition of ACS expres-

sion [43�].

The involvement of Sus in fiber elongation
Sucrose synthase (Sus; Ec 2.4.1.13) is encoded by one of the

cotton genes that is the earliest up-regulated gene during

fiber initiation and elongation [44��]. Sus is preferentially

expressed in elongating fiber cells but not in adjacent

normal epidermal cells, and it is induced significantly upon

exogenous ethylene treatment [8��]. Antisense suppres-

sion of Sus expression reduces hexose levels and the

osmotic potential in ovules of transgenic plants, leading

to a fiberless phenotype [44��]. These authors proposed

that suppression of Sus expression impairs the integrity of

the fiber cell wall by reducing the supply of UDP-D-

glucose (UDP-Glc) that is essential for the synthesis of

cellulose and many non-cellulose cell wall components

[44��]. Cellulose biosynthesis, which uses UDP-Glc as the

primary substrate, is, however, very slow in the early phases

of fiber development, and the amount of cellulose

increases only after the onset of secondary cell wall syn-

thesis around 15–20 dpa [7�,45]. Therefore, biosynthesis of

pectin precursors, which is activated early in development,

may be responsible for utilizing the large amounts of UDP-

Glc initially produced by Sus throughout the primary cell

wall synthesis and fiber elongation stages. Cellulose bio-

synthesis may start to function at the end of the primary cell

wall extension period to utilize the UDP-Glc that is

continuously produced by Sus and UGP for secondary cell

wall biosynthesis and deposition (see also Figure 2c).
Current Opinion in Plant Biology 2011, 14:106–111
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Conclusions
On the basis of the currently available results, we suggest

that fiber cells may elongate via a combination of both tip-

growth and diffuse-growth modes, which can be termed

the linear cell-growth mode (Figure 2c). Many types of

cells, such as cotton fibers, pollen tubes, root hairs, and

trichomes, may grow via this mode. These cells may all

possess a unique feature in that they respond positively,

in some way, to the plant hormone ethylene for

elongation [8��,19��,40��]. By contrast, leaves, stems

and petals may undergo two-dimensional enlargement

using a different mechanism given that they respond very

differently to exogenous ethylene.
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