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More than 100 different types of chemical modifications to RNA

have been documented so far. Historically, most of these

modifications were found in rRNA, tRNA and snRNA; recently,

new methods aided by high-throughput sequencing have

enabled identification of chemical modifications to mRNA,

leading to the emerging field of ‘RNA epigenetics’. One such

example is pseudouridine, which has long been known as a

RNA modification in abundant non-coding RNA (ncRNA) and

has recently been found to be present in mRNAas well. This

review first summarizes biogenesis and known functions of

pseudouridine in ncRNAs. We then focus on progress in

pseudouridine detection, especially the chemical-assisted,

transcriptome-wide sequencing tools that revealed the

dynamic nature of mRNA pseudouridylation. Such enabling

tools are expected to facilitate future functional studies of

pseudouridine.
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Chemical modifications of RNA
Modifications of DNA and proteins have been intensively

explored, such as 5-methylcytosine in DNA and histone

modifications that play regulatory roles in gene expres-

sion. In RNA, more than 100 types of chemical modifica-

tions have been found (http://mods.rna.albany.edu/mods/

). While most of these modifications were found in

abundant non-coding tRNA and rRNA, for a long time

only a few chemical modifications were known to be
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present in eukaryotic mRNA: the cap-related 7-methyl-

guanosine and 20-O-methylation, and N6-methyladeno-

sine (m6A), 5-methylcytosine and inosine which are

internal to mRNA. Understanding the mechanism and

regulation of these mRNA modifications (first termed

‘RNA epigenetics’ in 2012) will greatly expand our

knowledge about RNA biology [1]. Recently, with the

help of (bio)chemistry-assisted high-throughput sequenc-

ing tools, pseudouridine (c) and N1-methyladenosine

were found to be present in mRNA as well

[2��,3��,4��,5��,6�,7�] (Figure 1), further expanding the

alphabet of RNA epigenetics. While the biogenesis and

functions of c in non-coding RNAs (ncRNA) have been

extensively reviewed previously [8–11], in this review we

focus on the recently discovered mRNA pseudouridyla-

tion events. In particular, we emphasize recently devel-

oped high-throughput sequencing tools that have

revealed the dynamic and widespread nature of mRNA

pseudouridylation.

Pseudouridine: the first RNA modification
discovered
Pseudouridine, also known as the ‘fifth nucleotide’ in

RNA, was first discovered in 1951 and is overall the most

abundant RNA modification (with an estimated c/U ratio

of 7–9%) [12]. It has been known for decades that c is

present in tRNA, rRNA and snRNAs [10]. In rRNA, C is

important for rRNA folding and for the control of trans-

lational fidelity [13–15]. The additional H-bond donor of

C (when compared to U) can enhance base stacking and

thus influence rRNA folding [13,16]. C is found to be

clustered in functionally important regions of rRNA,

including peptidyl transferase center region, an intersu-

bunit bridge (helix 69), ‘A-site finger’ and the decoding

center [17–20]. A lack of Cs in any of these regions could

impair translation and has been shown to lead to reduced

growth rate in yeast. In tRNAs, C38, C39 and C55 can

stabilize the tRNA structure [21]. C in the anticodon of

tRNA could strengthen codon–anticodon base-pairing

and affect translation rate and accuracy [22,23]. In

snRNAs, C is distributed in the conserved and function-

ally important regions. Cs in U2 snRNA have effects in

snRNP biogenesis and pre-mRNA splicing both in a

mammalian cell free system and a Xenopus oocyte recon-

stitution system [24–28]. In summary, c plays essential

roles in the biological functions of these ncRNAs.

Pseudouridine synthases
c is generated from isomerization of uridine, catalyzed by

pseudouridine synthases (PUS) (Figure 2) [29]. Thirteen
www.sciencedirect.com
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Several chemical modifications are known to be present in eukaryotic mRNA, including the cap-related 7-methylguanosine and 20-O-methylation,

and internal modifications including N6-methyladenosine (m6A), 5-methylcytosine (m5C), inosine (I), pseudouridine (C) and N1-methyladenosine

(m1A).
pseudouridine synthases exist in human cells. These can

be categorized into two classes, namely RNA-dependent

and RNA-independent PUSs. These PUSs and their

RNA substrates are listed in Table 1. Most rRNA and

snRNA pseudouridylation is catalyzed through the RNA-

dependent mechanism, by the so-called box H/ACA

ribonucleoproteins. Box H/ACA RNA can fold into a

conserved hairpin–hinge–hairpin–tail structure and con-

tain two loops complementary to the sequence of sub-

strate RNA. In box H/ACA ribonucleoproteins, DKC1 (or

Cbf5 in yeast) is the pseudouridine synthase that per-

forms the isomerization of uridine. In the RNA-indepen-

dent mechanism, pseudouridylation is carried out through

a single PUS protein. Although sequence similarity be-

tween different PUSs is low, a similar fold consisting of an

eight-stranded mixed b-sheet is shared by these PUSs,

with a conserved active-site cleft flanked by several

helices and loops (Figure 2) [30].

Defects in PUSs can lead to several diseases. When

DKC1 is mutated, it leads to the multisystem disorder

X-linked dyskeratosis congenita (X-DC) [31]. DKC1

mutations cause defects in rRNA pseudouridylation

[32]; however, how defective ribosomes could lead to

disease and cancer was unknown at the time of its initial

discovery. Using an unbiased proteomics approach, the

Ruggero lab discovered a specific defect in IRES (internal

ribosome entry site)-dependent translation of mRNAs in

the X-DC patients. Such a defect was found to cause

impaired translation of IRES-containing mRNAs, some of

which encode important anti-apoptotic factors and tumor

suppressors [15,33,34]. Following this elegant study, Rug-

gero, Dinman and coworkers further revealed that DKC1

mutations decreased the rRNA binding affinity to IRES,

thus impairing the IRES-dependent translation initiation.
www.sciencedirect.com 
They also showed that tRNA exhibits decreased binding

affinity to A and P sites of the impaired ribosome, which

reduced the translation fidelity in both yeast and human

cells [15]. In addition to X-DC, myopathy, lactic acidosis

and sideroblastic anaemia (MLASA) is associated with a

missense mutation (R116W) or a stop mutation (E220X)

in PUS1 [35,36]. The missense mutation in PUS1 causes

the absence of pseudouridine at PUS1 targeted sites in

mitochondrial and cytoplasmic tRNAs, while the muta-

tion does not appear to affect the distribution of PUS1

inside of the cell [37].

Site-specific detection methods for c
Functional investigations of c have been significantly

facilitated by site-specific detection methods. The most

frequently used method is to react RNA with cyclohexyl-

N’-(2-morpholinoethyl) carbodiimide metho-p-toluene-

sulfonate (CMCT). CMCT can react with guanosine-like

and uridine-like nucleotides, while an alkaline treatment

(pH = 10.4) step hydrolyzes CMC adduct to G and U,

leaving only CMC-c mono-adduct [38]. This reaction was

first used in 1993 by the Ofengand group in a primer-

extension assay to detect c sites in rRNA [39]. As the N3

position is on the Watson-Crick face, the reverse tran-

scription will terminate one nucleotide 30 to the CMC-c

adduct, resulting in truncated cDNA. This property was

used to achieve a single-base resolution detection of c in

rRNA.

Becuase CMCT-based detection methods may not pro-

vide accurate modification fraction information due to the

nature of the incomplete CMCT labeling reaction, alter-

native methods including the enzymatic ligation-based

method or RNase H-based methods were developed

[40–42]. In a more recently developed method, site-specific
Current Opinion in Chemical Biology 2016, 33:108–116



110 Chemical genetics and epigenetics

Figure 2
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C is catalyzed by pseudouridine synthases (PUSs). (a) C is the C-glycoside isomer of uridine and generated by pseudouridine synthases; (b)

pseudouridine synthases in human are categorized into two classes, namely RNA-dependent and RNA-independent PUSs. Most rRNA and snRNA

pseudouridines are catalyzed through the RNA-dependent mechanism, or box H/ACA ribonucleoproteins.
cleavage and radioactive-labeling followed by ligation-

assisted extraction and thin-layer chromatography (SCAR-

LET) was used to determine the precise location and

modification fraction of RNA modification [41]. Using
Current Opinion in Chemical Biology 2016, 33:108–116 
20-O-methyl RNA-DNA chimera probes, substrate RNA

can be cleaved at the 50 side of the target nucleotide. The

cleaved RNA is then radio-labeled with [g-32P] ATP,

further purified and digested with nuclease P1. The
www.sciencedirect.com



Pseudouridine with renewed interests Li, Ma and Yi 111

Table 1

Thirteen pseudouridine synthases in human cells and their RNA

substrates

Synthase in human Putative RNA substrates

PUS1 tRNA, mRNA

PUS3 tRNA

PUS7 rRNA, mRNA

PUS10 tRNA

PUSL1 tRNA

PUS7L rRNA

TRUB1 tRNA, mRNA

TRUB2 tRNA

RPUSD1 tRNA

RPUSD2 tRNA

RPUSD3 tRNA

RPUSD4 tRNA

DKC1 rRNA, snRNA, mRNA
digested nucleotides are finally resolved by TLC. Using

SCARLET, three novel c sites in rRNA and one c site in

EEF1A1 mRNA were demonstrated. The c modification

level of U519 in EEF1A1 mRNA was determined to be

�56% [5��].

Mass spectrometry-based detection methods
for c
Pseudouridine is the only known mass-silent modification,

which means that it does not exhibit a mass shift compared

with uridine. Despite this, pseudouridine can be chemi-

cally derivatized with CMCT or acrylonitrile, resulting in

mass differences of 252 Da (CMCT-treated) or 53 Da

(acrylonitrile) compared with untreated samples. These

methods have allowed the detection of C using mass

spectrometry [43,44]. In a typical experiment, base-specific

endoribonucleases were coupled to chemical derivatiza-

tion to generate a mixture of oligoribonucleotides, which

are amenable to accurate mass measurements by ESI or

MALDI (matrix-assisted laser desorption/ionization) mass

spectrometry. While these methods only partially digest

the RNA molecules of interest, an SRM-based assay (via
LC–MS/MS) utilizes fully digested nucleosides and the

pseudouridine-specific fragmentation pattern to deter-

mine the degree of pseudouridylation [45].

Transcriptome-wide mapping of c
Coupling CMCT labeling and next generation sequenc-

ing, several transcriptome-wide sequencing methods

have been developed and applied to yeast and mammali-

an samples (Figure 3) [2��,3��,4��,5��]. In C-Seq, Pseudo-

Seq and PSI-Seq, mRNAs were reacted directly with

CMCT [2��,3��,4��]; CMC-C adducts generate truncated

cDNA during reverse transcription and these RT stops

were utilized in next-generation sequencing for C detec-

tion. In CeU-Seq (a homophone for ‘see U seq’), an azido-

modifed CMCT derivative was chemically synthesized

and utilized to pre-enrich C-containing RNAs via biotin

pull-down [5��]. In CeU-Seq, RNA samples were first

allowed to react with N3-CMCT; the N3-CMC-C adduct
www.sciencedirect.com 
was then coupled to biotin via click chemistry. Biotin

pull-down results in the enrichment of C-containing

RNA fragments, which were then reverse transcribed

and sequenced.

About 50–100 pseudouridine residues in yeast mRNA

and �100–400 sites in human mRNA were identified by

C-Seq, Pseudo-Seq and PSI-Seq; CeU-Seq identified

more than 2,000 C sites in human mRNA and �1500–
1700 C sites in mouse tissue, which is more consistent

with its 0.2–0.4% c/U ratio [2��,3��,4��,5��]. When using

very similar sequencing depth (by randomly selecting

similar numbers of sequencing reads from data

GSE63655) and the same strict C-calling criteria, CeU-

Seq still identified over 1000 C sites in the human

transcriptome. Presumably the pre-enrichment feature

of CeU-Seq enhanced the signal-to-noise ratio of the

sequencing data. However, because of the pre-enrich-

ment step, CeU-Seq cannot be used to quantify the

modification level of C sites of interests. Additionally,

all the four methods appear to require relatively large

amount of starting materials (5–10 mg mRNA) at their

present stage, due to RNA degradation during the alka-

line treatment step (pH �10.4). This has limited the

potential of pseudouridine sequencing to samples of

limited amount (e.g. clinically related samples). Screen-

ing of new chemical compounds that could react with C

under milder conditions or preparation of specific IP-

grade antibody could aid the development of future

sequencing methods.

Inducible pseudouridylation under stress
conditions
Besides the constitutive C sites, C can be induced by stress

conditions. The Yu lab reported that nutrient deprivation

can lead to novel pseudouridylation at positions 56 and

93 in Saccharomyces cerevisiae (S. cerevisiae) U2 snRNA,

which has three constitutive C sites at positions 35,

42 and 44. In addition to being induced by nutrient

deprivation, C56 can also be induced by heat shock

[46]. C56 and C93 was found to be catalyzed by Pus7p

or snR81 RNP, respectively [46]. The imperfect base

pairing between U2 snRNA and snR81 is necessary for

the inducible C93; interestingly, when the sequence of U2

snRNA or snR81 was mutated to allow perfect base pairing,

C93 became constitutive [46]. More importantly, the

induced C93 reduced pre-mRNA splicing, indicating func-

tional relevance of inducible pseudouridylation [46]. In

another remarkable demonstration, the Query lab found

that during filamentous growth of S. cerevisiae, Pus1p was

upregulated and C28 in U6 snRNA was inducibly cata-

lyzed by Pus1p [47�]. Mutations to specific sites in U6

snRNA can lead to robust pseudouridylation at U28 and

concomitant pseudohyphal growth phenotype. Moreover,

site-specifically pseudouridylated U28 by modified snR81

RNP (which targets U28) can also activate pseudohyphal

growth. Furthermore, utilizing the ACT1-CUP1 reporter
Current Opinion in Chemical Biology 2016, 33:108–116
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Figure 3
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Transcriptome-wide mapping of C in yeast and human. The flowchart of various transcriptome-wide C sequencing methods, including C-Seq,

Pseudo-Seq, PSI-Seq and CeU-Seq, are shown. In C-Seq, Pseudo-Seq and PSI-Seq, mRNAs were reacted directly with CMCT; in CeU-Seq,

mRNAs were reacted with an azido-modified CMCT derivative, thus allowing pre-enrichment of C-containing RNAs for sequencing. All these

methods combine CMCT labeling and next generation sequencing to detect C in the transcriptome at single base resolution.
system, the authors found that U6-C28 could alter spliceo-

some function. Thus, the inducible U6-C28 is also func-

tionally important and can lead to the filamentous growth
Current Opinion in Chemical Biology 2016, 33:108–116 
process (Figure 4) [47�]. In summary, these interesting

results suggest that inducible C can play important roles in

gene regulation and cell physiology.
www.sciencedirect.com
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Figure 4
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Inducible pseudouridylation under stress conditions. (a) C56 in U2 snRNA in Saccharomyces cerevisiae can be induced by both nutrient

deprivation and heat shock under the action of Pus7p. C93 can be induced by nutrient deprivation under the action of snR81; (b) C28 in U6

snRNA was inducibly catalyzed by Pus1p, leading to the filamentous growth process of S. cerevisiae; (c) upon heat shock, Pus7p was re-localized

from nucleus to cytoplasm and the majority of inducible C sites were found to be Pus7p-dependent; (d) in mammalian cells, inducible

pseudouridylation in the transcriptome displays a stress-specific pattern.
Recently, via mapping pseudouridylation in the yeast and

mammalian transcriptome, pseudouridylation in mRNA

is also shown to be dynamically regulated upon stress

conditions [2��,3��,5��]. In S. cerevisiae upon heat shock,

265 C sites were induced and majority of them were

found to be Pus7p dependent. Interestingly, the levels of

Pus7p mRNA and protein were reduced in this process. It
www.sciencedirect.com 
was found that Pus7p re-localized from nucleus to cyto-

plasm; thus the localization change of Pus7p may account

for the induced C sites (Figure 4) [2��]. In addition, the

induced, Pus7-depedented pseudouridylated mRNAs

appeared to be more stable, indicating a potential role of

C in mRNA stability [2��]. In mammalian cells, pseudour-

idylation in the transcriptome can also be dynamically
Current Opinion in Chemical Biology 2016, 33:108–116
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regulated and displays a stress-specific pattern [5��]. Both

heat shock and H2O2 conditions were found to induce a

similar increased pseudouridylation level (�1.5 fold), yet

comparisons of the induced C sites under the two stimuli

revealed that the inducible C sites displayed strong sti-

muli-specific patterns and were essentially non-overlap-

ping [5��]. All of these observations indicate that Cs in

mRNA may have regulatory roles; the exact biological

consequences of inducible pseudouridylation remain to

be investigated.

Pseudouridine can influence mRNA
translation in vitro
Via in vitro transcription, all the regular Us in a mRNA can

be substituted with Cs. When incubating the pseudour-

idylated mRNA with different in vitro translation sys-

tems, it was shown that C could have different effects on

mRNA translation [48]. In the rabbit reticulocyte system,

the replacement of U with C stimulated translation; in the

wheat germ system, C slightly repressed translation while

in the Escherichia coli system C almost blocked translation

[48]. Recently, C was site-specifically introduced into

mRNA and translated in another in vitro E. coli system.

This recent study showed that at each position of codon

(UUU), C can all repress translation although to different

extent [49�]. In addition to Cs within sense codons, the

Yu lab found that C could convert a nonsense codon into a

sense codon, both in an in vitro nonsense suppression

assay and in an in vivo targeted pseudouridylation system

(by the newly derived H/ACA) [50]. Additional LC–MS/

MS analysis showed that CAA and CAG directed serine

and threonine incorporation while CGA directed tyrosine

and phenylalanine incorporation (Figure 4) [50]. Follow-

ing on from this work, the crystal structure of a ribosome

complex with the anticodon stem loop of tRNA and a

CAG containing mRNA showed non-canonical base pair-

ing interactions between the anticodon and the CAG

codon, indicating that the expansion of the genetic code is

possible [51]. As Cs have been shown to be abundantly

present in CDS, whether Cs can influence translation rate

and accuracy in vivo is also worth future investigation.

Concluding remarks
C is widely distributed in many types of ncRNAs; newly

developed sequencing methods have also revealed its

presence in mRNA and long non-coding RNA. However,

many questions remain unanswered, even sixty years

after its initial discovery. Firstly, 13 pseudouridine

synthases are present in human cells; however, the sub-

strate specificity, localization and biological functions of

many synthases are poorly studied at present. CLIP or

PAR-CLIP experiments of these PUSs and the existing c

sequencing methods will, for sure, help us understand

more about their biological roles and the mechanisms of

related disease (if any). Secondly, although the existing c

sequencing methods have opened many possibilities for

c-related RNA research, for clinical samples or other
Current Opinion in Chemical Biology 2016, 33:108–116 
samples which are difficult to obtain, more sensitive

and milder methods are needed. Thirdly, the biological

significance of many c sites remains unknown at this

moment. Recent studies reveal that the m6A modification

is reversible, with direct and indirect reader proteins to

recognize it for gene regulation. m6A participates in many

biological processes and developmental stages including

yeast meiosis and circadian clock function [52–57]. As

mRNA C modifications are dynamic, it is tempting to

speculate that C may also participate in gene regulation.

For instance, C may affect mRNA secondary structures

(by enhancing base pairing with adenine), leading to

altered binding of RNA binding proteins. It is worth

noting that during the revision of this review, the Yu

group report that Cs in U2 snRNA contribute to pre-

mRNA splicing by altering the binding/ATPase activity

of Prp5, representing the first example of C directly

influencing protein binding [58�]. Additionally, the pres-

ence of C could alter the dynamics of translating ribo-

somes, as has been recently shown for m6A [59]. Whether

or not C could affect the stability of mRNA is also open

for future investigation; since under heat shock conditions

an association of pseudouridylation and stability of

mRNA transcripts has been reported [2��]. Although

many questions remain, recent findings have attracted

increasingly more attention to this long known modifica-

tion; and we expect that future research on C can further

enhance our understanding of the emerging field of ‘RNA

epigenetics’.
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