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DELLA-mediated PIF degradation contributes to
coordination of light and gibberellin signalling in
Arabidopsis
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Light and gibberellins (GAs) antagonistically regulate hypocotyl elongation in plants. It has

been demonstrated that DELLAs, which are negative regulators of GA signalling, inhibit

phytochrome-interacting factors 3 and 4 (PIF3 and PIF4) by sequestering their

DNA-recognition domains. However, it is unclear whether there are other mechanisms of

regulatory crosstalk between DELLAs and PIFs. Here, we demonstrate that DELLAs negatively

regulate the abundance of four PIF proteins through the ubiquitin–proteasome system.

Reduction of PIF3 protein abundance by DELLAs correlates closely with reduced hypocotyl

elongation. Both sequestration and degradation of PIF3 by DELLAs contribute to a reduction

in PIF3 binding to its target genes. Thus, we show that promotion of PIF degradation by

DELLAs is required to coordinate light and GA signals, and the dual regulation of transcription

factors by DELLAs by both sequestration and degradation may be a general mechanism.
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L
ight promotes plant photomorphogenesis, giving rise to
open and expanded cotyledons, and short hypocotyls in
light-grown Arabidopsis seedlings. In the dark, seedlings

undergo skotomorphogenesis/etiolation, as characterized by
closed cotyledons and elongated hypocotyls1. A subset of basic
helix-loop-helix (bHLH) transcription factors, known as
phytochrome-interacting factors (PIFs), has been reported to
have a key role in etiolation and light-regulated plant
development. PIF3 was the first characterized member of this
gene family, identified by yeast two-hybrid screen using
phytochrome B as the bait2. Mutation of PIF3 resulted in short
hypocotyls in red light, indicating that PIF3 is a negative regulator
of light signal transduction3,4. Several other homologous PIF
proteins, including PIF1, PIF4, and PIF5, have also been reported
to regulate photomorphogenesis5–7. A quadruple pif mutant
(lacking PIF1, PIF3, PIF4, and PIF5) exhibits a striking
constitutively photomorphogenic phenotype in the dark, which
indicates that these four PIF factors act redundantly to promote
etiolated growth8–10. In the dark, PIF proteins accumulate and
directly regulate thousands of genes to maintain skotomorpho-
genesis11–13. Upon illumination, the photoactived phytochromes
trigger PIFs’ rapid phosphorylation and subsequently
proteasome-mediated degradation14–17, leading to a cascade of
transcriptional changes to promote photomorphogenesis12,18–20.

During seedling development, gibberellins (GAs) promote
etiolated growth, thus showing the opposite effect to light on
photomorphogenic programme21. Deficiency of GA (as in ga1-3
mutant) induces partial constitutive photomorphogenesis
phenotype in darkness, resulting in a loss of apical hook, open
cotyledons and shortened hypocotyls21. DELLA proteins are the
key repressors of almost all GA responses22. There are five
DELLA proteins in Arabidopsis GA INSENSITIVE (GAI),
REPRESSOR OF ga1-3 (RGA), RGA-LIKE 1 (RGL1), RGL2
and RGL3, which have both distinct and overlapping functions22–

30. In darkness, constitutively photomorphogenic phenotypes of
ga1-3 mutants can be almost fully suppressed by rga and gai null
alleles, indicating that RGA and GAI are the two main DELLA
members involved in GA-dependent repression of
photomorphogenic growth in seedlings21,31,32. When GA is
present, GA receptor GID1 binds to the DELLAs to form GID1–
GA–DELLA complex, which triggers the ubiquitination and
subsequent degradation of DELLA proteins by the 26S
proteasome33–35. DELLAs have a conserved DELLA domain at
the N terminus that is essential for GA-triggered protein
degradation22. Deletion of the DELLA domain results in
stabilization of these proteins and leads to a GA-unresponsive
dwarf phenotype22.

How light and GAs antagonistically regulate hypocotyl elonga-
tion has been extensively analyzed in the past two decades. Two
independent studies demonstrated that DELLAs can physically
interact with and block PIF3 and PIF4 activities by sequestering the
transcription factors from binding to their targets, which ultimately
results in inhibition of hypocotyl elongation36,37. Further study
showed that DELLAs also interact with the bHLH proteins PIF1
(also known as PIL5), PIF6 (also known as PIL2) and
SPATULA(SPT)38. The sequestration of PIFs by DELLAs
provided an important molecular link between light and GA
signalling in regulating photomorphogenesis. Later, the model of
sequestration was demonstrated to be a general mechanism for
DELLAs to regulate transcription factors involved in other
signalling pathways39–44. Beside the well-established sequestration
action model, we are interested in exploring whether there are
additional regulatory actions between DELLAs and PIFs in the
crosstalk of light and GA signals.

We were intrigued by the observation that RGA and GAI
proteins oscillate in a diurnal manner, with higher level during

daytime and lower level at night, which is critical for the rhythmic
growth of hypocotyls45. In contrast, as the prominent regulators
of seedlings growth under the diurnal condition, PIF3 abundance
accumulates in the dark to induce hypocotyls growth and it
decreases after light illumination46. Following the clue of opposite
oscillation patterns of DELLAs and PIF3 proteins, we focused on
protein turnover as a potential regulatory mechanism. In this
study, we report that DELLAs promote the degradation of PIF
proteins through the ubiquitin–proteasome system. Thus, protein
degradation is an additional mechanism by which DELLAs
inactivate PIFs to coordinate light and GA signals during plant
development.

Results
DELLAs negatively regulate PIF3 protein abundance. Intrigued
by opposite protein accumulation dynamics of DELLAs and PIF3
in a diurnal cycle45,46, we designed the experiments to ask
whether DELLAs and PIF3 affect the protein level of each other.
Two DELLA proteins RGA and GAI are the two main repressors
of GA-mediated suppression of photomorphogenesis in
darkness21, were used for the study. The GA-insensitive
mutants rga-D17 and gai, lacking 17 amino acids within the
DELLA domain that is required for GA-induced
degradation23,24,26, were used to examine PIF3 protein level. As
shown before26, the rga-D17 mutant exhibited shorter hypocotyls
compared to its wild-type counterpart, Ler in darkness (Fig. 1a).
Accompanying this phenotype, endogenous PIF3 protein
levels were dramatically reduced (Fig. 1b). Similarly, the
non-degradable GAI mutant showed shortened hypocotyls and
decreased PIF3 protein abundance in darkness (Fig. 1a,c). On the
basis of the observed effects on hypocotyl length and PIF3 protein
abundance, it seems that RGA has a more dominant role than
GAI in inhibiting skotomorphogenesis. By contrast, della
pentuple mutant exhibited elongated hypocotyl length and
slightly increased PIF3 protein abundance compared with the
wild type (Fig. 1a,b), further supporting a negative role of
DELLAs in regulating skotomorphogenesis and PIF3. RGA and
GAI had little effect on PIF3 transcript level (Supplementary
Fig. 1a,b), suggesting that DELLAs negatively regulate PIF3
abundance mainly at the post-transcriptional level. To test
whether PIF3 affects the abundance of RGA, we examined
RGA protein levels in wild type, 35:PIF3-Myc, pif3-3 and pifq
(pif1 pif3 pif4 pif5) seedlings, and the results suggested that PIF3
has no obvious effect on RGA protein level (Fig. 1d).

Induction of DELLA proteins triggers PIF3 degradation. To
further investigate the role of DELLAs in regulating PIF3 protein
abundance, we generated transgenic Arabidopsis plants
harbouring the HA-tagged RGAD17 or GAID17 under the
control of a dexamethasone (DEX)-inducible promoter.
RGAD17-HA and GAID17-HA seedlings without treatment
showed typical etiolated phenotypes in darkness, while
DEX-treated seedlings displayed retarded hypocotyl growth
(Fig. 2a,b), similar to rga-D17 or gai mutants (Fig. 1a). Immu-
noblot analysis showed that both RGAD17-HA and GAID17-HA
proteins accumulated to high levels after DEX induction
(Fig. 2c,d). These results demonstrated that DEX-induced
RGAD17-HA and GAID17-HA fusion proteins were biologically
functional, as they were able to shortcut endogenous GA action
and induce a photomorphogenic-like phenotype. The amount of
PIF3 was markedly decreased when RGAD17-HA or GAID17-
HA accumulated in the presence of DEX (Fig. 2c,d), which is
consistent with the results in Fig. 1. We next performed transient
induction of the transgenes. After 12 or 24 h DEX treatment, as
RGAD17-HA protein accumulated, PIF3 protein abundance
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dramatically reduced (Fig. 2e). Similarly, the accumulation of
GAID17-HA after 24 h DEX treatment also led to the reduction of
PIF3 protein (Fig. 2f). There were no obvious changes of PIF3
transcripts during the DEX induction (Supplementary Fig. 1c,d),
indicating that DELLAs negatively regulated PIF3 mainly at the
protein level.

DELLA control of PIF levels correlates with hypocotyl length.
As the central repressors in the GA signalling pathway, abun-
dance of DELLAs is tightly controlled by GA33–35. Since DELLAs
were shown to regulate PIF3 protein abundance (Figs 1 and 2)
and PIF3 promotes hypocotyls elongation3,46, we speculated that
the abundance of PIFs might be regulated by GA content, which
may further mediate hypocotyl elongation. As expected, GA3 (an
active form of GA) treatment promoted, whereas paclobutrazol
(PAC; a GA biosynthesis inhibitor) treatment inhibited hypocotyl
elongation of wild-type (Col) plants (Fig. 3a and Supplementary
Table 1). As shown in Fig. 3b, GA3 treatment promoted

endogenous PIF3 protein accumulation, while PAC treatment
caused an obvious decrease of PIF3 abundance. Consistently, GA3

or PAC treatment of seedlings of two other wild-type Arabidopsis
ecotypes, Wassilewskija (Ws) and Landsberg erecta (Ler), showed
similar results (Supplementary Fig. 2). To exclude the possibility
of regulation at the transcript level, 35S:PIF3-Myc seedlings were
also treated with GA3 or PAC. Similar to the results in wild type
(Fig. 3b), GA3 increased, while PAC repressed, PIF3-Myc protein
abundance (Fig. 3c).

To quantitatively assess the relationships between DELLAs,
PIF3 and hypocotyl elongation, we examined RGA and PIF3
protein levels, and hypocotyl length of 35S:PIF3-Myc seedlings
grown in the presence of various PAC concentrations. With
increasing dose of PAC, hypocotyl elongation of dark-grown
seedlings declined progressively (Fig. 3d). In these seedlings, RGA
accumulated, while PIF3-Myc decreased gradually (Fig. 3e). By
calculating the relative change of hypocotyl length and protein
abundance of RGA and PIF3-Myc, we found that the attenuating
effect of RGA on PIF3 abundance correlated well with hypocotyl
growth (Fig. 3f).

To further analyze the significance of DELLA’s negative
regulation on PIF3 abundance in the GA signalling pathway,
we checked the phenotypes and PIF3 protein abundance in dark-
grown sly1-10, sly1-10 gai-t6, sly1-10 rga-24 and sly1-10 gai-t6
rga-24 seedlings (Fig. 3g,h). SLEEPY1 (SLY1) is an E3 ligase
component responsible for the ubiquitination of DELLA proteins,
and its mutant (sly1-10) contains elevated levels of RGA and
GAI33–35. The constitutive photomorphogenic phenotype of
sly1-10 could be partially suppressed by the absence of GAI
(gai-t6) and RGA (rga-24) (Fig. 3g), which indicates that
accumulation of GAI and RGA can account for the short
hypocotyl phenotype of sly1-10. PIF3 protein abundance was then
examined in these mutants and the extremely low level of PIF3 in
sly1-10 was partially rescued by the absence of RGA and GAI
(Fig. 3h). This is consistent with the notion that over-accumulation
of RGA and GAI proteins in sly1-10 promote degradation of
PIF3. For the regulation of PIF3 protein level and hypocotyl
elongation, the effect of RGA is stronger than GAI (Fig. 3g,h),
similar to the results in Figs 1 and 2. These data suggest that the
reduction of PIF3 abundance by DELLAs may have a key role in
suppressing GA-mediated hypocotyl elongation.

DEX-induced RGA accumulation led to the PIF3 degradation
within 12 h (Fig. 2). To determine how fast DELLAs’ regulation
of PIF3 responds to the change of GA levels, we applied GA3

to seedlings grown on medium containing PAC and checked
how PIF3 level recovered. In the plants with PAC treatment,
RGA protein accumulated and PIF3 protein decreased. GA3

application led to a quick reduction of RGA protein levels, while
PIF3 abundance increased within hours and almost fully
recovered by 12 h of GA3 treatment (Fig. 3i). Together, the data
in Figs 2 and 3 suggest that DELLA-mediated degradation may
provide the plant with a tunable way of regulating the abundance
of PIFs in response to a variety of cues that modulate GA
metabolism.

DELLAs contribute to diurnal oscillation of PIF3 levels. To
investigate whether DELLAs also promote PIF3 degradation
under light conditions, 35S:PIF3-Myc seedlings were grown on
medium containing GA3 or PAC under continuous red light and
PIF3-Myc protein levels were checked. As shown in Fig. 4a,b,
DELLAs negatively regulate hypocotyl elongation and PIF3
protein abundance under red light. Considering that DELLAs and
PIF3 show opposite protein abundance dynamics in a diurnal
cycle45,46, we were interested in whether DELLAs help forming
the oscillatory wave of PIF3 levels under diurnal conditions. To
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Figure 1 | DELLAs negatively regulate PIF3 protein abundance in the
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rga-D17, della, gai and their wild-type counterparts. Means±s.d. were
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protein levels. Four-day-old dark-grown seedlings were collected for protein

extraction, and total proteins were immunoblotted with anti-RGA and

anti-RPN6 antibodies. PIF3ox indicates 35S:PIF3-Myc. RPN6 was used as a

loading control. Each immunoblot result is the representative of at least

three repeats.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11868 ARTICLE

NATURE COMMUNICATIONS | 7:11868 | DOI: 10.1038/ncomms11868 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


test this, we examined the pattern of PIF3-Myc protein levels in
35S:PIF3-Myc seedlings treated with or without GA3 or PAC
under diurnal short-day conditions. As shown in Fig. 4c,d,
PIF3-Myc protein abundance was low in daytime and
accumulated to higher levels in the night, which was consistent
with previous studies46. On GA3 application, PIF3-Myc increased
throughout the day compared to mock treatment, and the
increase was larger in daytime and early night (at ZT4, 8, 12 h)
than in mid- and late night (at ZT18, 24 h) (Fig. 4c,d), which
weakened the oscillation patterns of PIF3 protein. These results
suggested that DELLAs contribute to the oscillation patterns of
PIF3 protein levels in plants grown in diurnal light/dark
conditions. On PAC treatment, a condition that increased
DELLA abundance, not only did PIF3-Myc levels decrease
sharply, but also its oscillation pattern was dramatically
impaired (Fig. 4c,d). These results further support the
contribution of DELLAs to PIF3 oscillation under diurnal
conditions.

DELLAs and phyB/LRBs mediate PIF degradation independently.
We next tested whether DELLAs modulate the abundance of PIF3
via the ubiquitin–proteasome system. We found that PAC-
induced reduction of endogenous PIF3 levels in wild-type seed-
lings or seedlings ectopically expressing the PIF3-Myc protein
was inhibited by treatment with MG132, a 26S proteasome
inhibitor (Fig. 5a,b). Similarly, MG132 treatment also increased
PIF3 protein levels in rga-D17 mutant seedlings in the dark
(Fig. 5c). Moreover, MG132 completely blocked PIF3 degradation
in RGAD17-HA seedlings with DEX treatment (Fig. 5d). Taken
together, these results showed that inhibiting proteasome activity
is able to abolish the degradation of PIF3, which would otherwise
take place under circumstances where DELLA proteins accumu-
late, and thus suggests that DELLAs promote PIF3 protein
degradation through the ubiquitin–proteasome pathway.

Since PIF3 functions redundantly with its three homologues,
PIF1, PIF4 and PIF5, to repress photomorphogenesis in
darkness8–10, and DELLAs sequester and inhibit transcriptional
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activity of both PIF3 and PIF4 (refs 36,37), we tested whether
DELLAs also negatively regulate protein abundance of PIF1, PIF4
and PIF5. As shown in Fig. 5e–g, the abundance of all three PIF-
Myc proteins was reduced in the 35S:PIF1-Myc, 35S:PIF4-Myc
and 35S:PIF5-Myc seedlings after PAC treatment. Furthermore,
PAC triggered reduction of PIF-Myc abundance could be
inhibited by MG132 treatment. Collectively, these data indicate

that DELLAs promote the degradation of these four PIF proteins
via the proteasome.

The light-activated photoreceptor phyB interacts with PIF3
and recruits LRB1/2/3 containing E3 ligases to ubiquitinate PIF3
(ref. 16). To address whether phyB and LRBs are involved in
DELLA-mediated PIF degradation, we treated phyB-9 and lrb123
mutants with different concentrations of PAC (Fig. 6a–d and
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Supplementary Fig. 3). The results showed that PAC can induce
PIF3 destruction in phyB-9 and lrb123 mutants as effectively as in
wild type. These results indicate that phyB and LRBs are not
required for DELLA-mediated PIF3 degradation. Conversely, we
investigated whether the della pentuple mutant affect light-
triggered degradation of PIF3 protein. As shown in the Fig. 6e,f,
the red light-induced degradation rate of PIF3 in della mutant is
similar to that in wild type, indicating that DELLAs are not

required for red light-induced PIF3 degradation via phyB/LRBs.
Thus, DELLAs and phyB/LRBs represent two independent
pathways that mediate degradation of PIF3.

COP1 and DET1 proteins have been shown to maintain PIF3
protein stability, and PIF3 protein can hardly be detected in
cop1-4 or det1-1 mutant47,48. Our analyses showed that GA and
PAC could not modulate PIF3 abundance without the presence of
COP1 or DET1, indicating that COP1 and DET1 are essential for
GA-mediated PIF3 accumulation (Supplementary Fig. 4).

DELLAs regulate PIF3 by both sequestration and degradation.
Previous reports indicated that DELLAs interact with PIF3 and
prevent PIF3 from binding to its target genes37. In this study, we
found that DELLAs can promote the degradation of PIF3. To
dissect the specific contributions of these two forms of regulation,
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Figure 5 | DELLAs promote the degradation of PIF proteins via the

ubiquitin–proteasome system. (a,b) Effects of PAC (0.5mM) and MG132

(100mM) treatments on RGA, PIF3 and PIF3-Myc protein levels in 4-day-old

dark-grown seedlings. (c) Effects of MG132 on PIF3 protein levels in
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(e–g) Effects of combinational PAC and MG132 treatments on PIF1-Myc,

PIF4-Myc and PIF5-Myc protein levels in 4-day-old dark-grown seedlings.

Each immunoblot result is the representative of at least three repeats, and

RPT5 was used as a loading control.
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we examined the promoter occupancy of PIF3-Myc by
Chromatin ImmunoPrecipitation (ChIP) experiments, as the
readout of PIF3 activity under different PAC and/or MG132
treatments.

Seedlings treated with PAC had increased RGA levels and
reduced PIF3-Myc levels (Fig. 5b and Supplementary Fig. 5),
presenting a situation in which presumably both sequestration
and degradation mechanisms would have a role in regulating
PIF3 activity. In contrast, treatment of seedlings with both PAC
and MG132 increased RGA abundance, while PIF3-Myc levels
were almost the same as mock-treated seedlings, presenting a
situation in which only sequestration is likely to have a role. We
then analyzed the binding of PIF3 to its known target genes
(PIL1, IBH1, ATHB2, ATHB4 and HAT1)13. As shown in Fig. 7a,
the promoters of these five genes were significantly enriched in
the ChIP samples of untreated 35S:PIF3-Myc seedlings (Mock). In

PAC-treated seedlings, the enrichment of these promoters was
significantly decreased, indicating that sequestration and
degradation together strongly inhibit the binding of PIF3 to its
target genes. On the other hand, in seedlings treated with both
PAC and MG132, the enrichment levels, although still decreased
when compared to mock, were clearly higher than those treated
with PAC alone, indicating that sequestration by itself can already
inhibit the binding of PIF3 to its targets, while degradation
provides additional level of inhibition, presumably reducing PIF3
activity even further. Treatment of MG132 alone without PAC
did not affect PIF3-Myc or RGA level (Supplementary Fig. 6a),
nor the binding of PIF3-Myc on the targets (Supplementary
Fig. 6b).

Although DELLA proteins have no classical DNA-binding
domains, they have been shown to directly target some
GA-responsive genes such as SCL3 (refs 49,50). To test whether
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RPN6 was used as a loading control. (b) The quantification of the western blot results from (a) using image J software. PIF3 protein levels were normalized
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DELLAs potentially interfere in PIF3 binding to its target genes,
we conducted a RGA ChIP analysis using the inducible
HA-tagged RGAD17 transgenic plants. Our data indicated that
DEX-inducible RGAD17-HA protein bound strongly to the SCL3
promoter, but not to the promoters of PIF3 target genes
(Supplementary Fig. 7). These results suggest that DELLA
proteins would not bind PIF3 target genes.

Taken together, these data suggest that DELLAs can inhibit
PIF3 activity via a dual regulatory mechanism, which involves
both sequestration and degradation.

Discussion
Light and GA antagonistically control hypocotyl elongation of
seedlings. In this crosstalk, DELLA proteins sequestrate PIF3 and
PIF4, and repress their DNA-binding ability, which explains the
antagonistic control of hypocotyl elongation by light and GA36,37.
In this study, we found that DELLAs negatively regulate PIF3
protein abundance under both continuous dark and light
conditions (Figs 1–4). In addition to PIF3 and PIF4, DELLAs
also interact with PIF1 and PIF5 (Supplementary Fig. 8 and ref. 38),
and promote degradation of these PIFs via the ubiquitin–
proteasome system (Fig. 5). The reduction of PIF3 abundance
by DELLAs contributes significantly to the oscillatory patterns of
PIF3 protein level in plants growing in diurnal light/dark

conditions (Fig. 4c,d). Furthermore, we showed that both the
sequestration and degradation contribute to the inhibition of
PIF3 activity (Fig. 7a). Therefore, degradation is a new level of
regulation of DELLAs on PIFs, in addition to the previously
demonstrated regulation by sequestration. Together, we propose a
model that illustrates how GA and light signals coordinate to
regulate plant hypocotyl elongation (Fig. 7b). Briefly, we propose
that when GA is present, it promotes the formation of the
GA–GID1–DELLA complex and leads to the rapid ubiquitination
and degradation of DELLAs, thus releasing PIFs to promote
hypocotyl elongation. In contrast, when GA is absent, we propose
that DELLA proteins accumulate and inhibit the function of PIFs
by both sequestrating them from binding to their target
promoters as well as by promoting their degradation via the
ubiquitin–proteasome system, and thus hypocotyl elongation is
inhibited. DELLA-induced PIF3 degradation is independent of
the light-mediated PIF3 degradation pathway, as it can occur in
the absence of activated phyB and LRBs E3 ligase system. As to
how DELLAs mediate the PIF3 abundance, COP1 and DET1
proteins were shown to be essential for GA-mediated PIF3
accumulation (Supplementary Fig. 4), but the E3 ligase through
which DELLAs trigger PIF3 degradation is still unknown. GA3

application led to a quick reduction of RGA protein levels, but
PIF3 abundance was almost fully recovered after 12 h treatment
(Fig. 3i). During this period, the unknown E3 ligase responsible
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for DELLAs-mediated PIF3 degradation may be de-activated, and
then PIF3 proteins may accumulate gradually.

GAs can also coordinate with other signals to regulate plant
development. For example, core transcription factors in several
different signalling pathways, including BZR1, EIN3, JAZ and
WD-Repeat/bHLH/MYB complex, were shown to be sequestrated
and inhibited by DELLAs, similar to PIF3 and PIF4 (refs 36–44).
These results suggest that sequestration is a general mechanism
by which DELLAs inhibit transcription factors. Among these
transcription factors, BZR1 was the only one for which DELLA
was reported to promote a reduction in protein levels41. Here, we
showed that DELLAs can promote the degradation of PIF1, PIF3,
PIF4 and PIF5. Extending from this finding, we propose that
controlling protein abundance of transcription factors represents
another general mechanism of how DELLAs may regulate their
targets. To test this hypothesis, we examined EIN3 from the
ethylene signalling pathway. A previous study showed that
DELLAs sequester EIN3, but GA3 did not markedly affect EIN3
protein abundance42. Consistently, GA treatments did not
noticeably affect the abundance of EIN3-GFP and EIN3-FLAG
proteins in our experiment; however, PAC treatments
dramatically reduced their abundance (Supplementary
Fig. 9a,b). It is possible that EIN3 accumulates to a high level
in darkness, and is not sensitive to exogenous GA, which
decreases DELLA levels but could not further increase EIN3
abundance. On the other hand, highly elevated levels of DELLAs
after PAC treatment may promote EIN3 degradation. Taken
together, our data suggests that the inhibition of transcription
factors by DELLAs is mediated through both sequestration and
degradation.

Methods
Plant materials and growth conditions. The wild-type Arabidopsis ecotypes used
in this study were Columbia-0 (Col-0), Landsberg erecta (Ler) and Wassilewskija (WS).
The mutants and transgenic lines were described previously: pif3-3 (ref. 4),
35S: PIF1-Myc, 35S: PIF3-Myc, 35S: PIF4-Myc and 35S: PIF5-Myc (ref. 48), rga-24
(ref. 25), rga-D17 (ref. 26), della (gai-t6 rga-t2 rgl1-1 rgl2-1 rgl3-1) (ref. 37), sly1-10
gai-t6, sly1-10 rga-24, sly1-10 gai-t6 rga-24 (ref. 34), phyB-9 (ref. 51), lrb123
(ref. 16), cop1-4 (ref. 52), det1-1(ref. 53), 35S: EIN3-GFP/ein3 eil1 (ref. 54) and
35S: EIN3-FLAG/ein3 eil1 (ref. 55). Since homozygous rga-D17 is sterile26, the
homozygous rga-D17 seedlings segregated from the progenies of heterozygous
rga-D17 were used for experiments. gai (Col background) is a gift from Xiangdong
Fu of IGDB. All seeds were surface-sterilized and sown on Murashige and Skoog
(MS) medium containing 1% sugar. Seeds were cold-treated at 4 �C for 4 days in
the dark before germination. The seedlings were grown in the dark, under
continuous red light (0.5 mmol m� 2 s� 1) or under short-day conditions (8 h white
light (85mmol m� 2 s� 1) þ 16 h dark) for the indicated times, unless indicated
otherwise. Manipulation of seedlings in darkness was performed under dim green
light.

Generation of transgenic plants. DNA fragments containing two deletion
mutants (RGAD17 and GAID17) without stop codons were amplified and inserted
into the XmaI and PstI restriction sites of a pBSK-derived plasmid containing triple
HA-tag to make constructs pBSK-RGAD17-HA and pBSK-GAID17-HA. Further,
the fragments RGAD17-HA and GAID17-HA were amplified from pBSK-RGAD17-
HA or pBSK-GAID17-HA, and these fragments were digested with the SalI and
SpeI, and then ligated into the XhoI and SpeI digested binary vector pTA7002
(ref. 56) to generate pTA7002-RGAD17-HA and pTA7002-GAID17-HA
constructs. These binary constructs were introduced into the GV3101 strain of
Agrobacterium and transformed into della mutant plants, using the floral dip
transformation method57. The transformants were selected on MS medium
containing 50 mg ml� 1 hygromycin B (Sigma-Aldrich), and named as RGAD17-HA
and GAID17-HA, respectively. The primers are listed in Supplementary Table 2.

Plant treatments. GA3 (GA), paclobutrazol (PAC) and DEX were dissolved in
ethanol. The proteasome inhibitor MG132 was dissolved in DMSO. For continuous
GA3 and PAC treatments, after the seeds were induced by white light for germi-
nation on regular MS medium, they were transferred to medium containing GA3

(10 mM), PAC (0.5mM) and ethanol (0.01% (v/v), as control), and then grown in
the dark for 4 days. For the transient treatment by GA3, the seedlings were collected
and vacuum-infiltrated with liquid MS medium containing 100mM GA3 or ethanol
alone (as control) for 10 min and then kept immersed in the same solution for the

indicated times. For continuous DEX treatment, Arabidopsis seedlings were grown
on the MS medium containing 1 mM DEX or ethanol alone (as control). For the
transient induction by DEX, the 4-day-old seedlings were vacuum-infiltrated with
liquid MS medium containing 10 mM DEX or ethanol alone (as control) for 10 min
and then kept immersed in the same solution for the indicated times. For MG132
treatment, the 4-day-old seedlings were vacuum-infiltrated with liquid MS medium
containing 100mM MG132 (dissolved in DMSO) or DMSO alone (as control) for
10 min and kept immersed in the same solution for 4 h unless indicated otherwise.

Protein extraction and Immunoblots. Total proteins were extracted by homo-
genizing seedlings using denaturing buffer (100 mM NaH2PO4, 10 mM Tris–HCl
pH 8.0, 8 M urea, 1 mM phenylmethylsulfonyl fluoride, and � 1 complete protease
inhibitor mixture (Roche). Seedlings were growing in the dark for 4 days unless
specific indications. Extracts were centrifuged at 16,000g for 10 min at 4 �C, and
protein concentration in the supernatants was quantified by the Bradford assay.
Aliquots of denatured total protein were separated on 8% SDS–PAGE gels and
transferred to PVDF membranes. Anti-PIF3 purified antibody at 1:500 (v/v)
dilution (ref. 48), anti-Myc polyclonal antibody (Sigma-Aldrich, Cat. No: C3956) at
1:1,000 (v/v) dilution, anti-HA antibody (Sigma-Aldrich, Cat. No: H9658) at
1:1,000 (v/v) dilution, anti-RGA antibody (Agrisera, Cat. No: AS111630) at 1:1,000
(v/v) dilution, anti-FLAG (Sigma-Aldrich, Cat. No: F3165) at 1:1,000 (v/v) dilution,
anti-GFP (Abmart, Cat. No: M20004) at 1:1,000 (v/v) dilution, anti-RPN6
polyclonal antibody (ref. 58) at 1:2,000 (v/v) dilution, and anti-PRT5 polyclonal
antibody (ref. 58) at 1:2,000 (v/v) dilution were used as primary antibodies. Each
experiment was repeated at least three times, and one representative result was
shown. Quantification results of immunoblots in Figs 3f, 4d, 6b, 6d and 6f were
quantified by Image J software. Supplementary Figures 10–22 are original full
versions of the immunoblot images.

RNA extraction and quantitative RT-PCR. Total RNA was extracted using the
RNeasy plant mini kit (Qiagen). cDNA was synthesized by ReverTra Ace qPCR RT
Master Mix (TOYOBO). The quantitative RT-PCR analysis was performed using
SYBR Premix Ex Taq (Takara) in an ABI 7500 fast real-time instrument. Each
experiment was repeated with three biological samples, and RT-PCR reactions were
performed with three technical replicates for each sample. The primers are listed in
Supplementary Table 2.

Hypocotyl lengths measurement. After the indicated times of growth and
treatment, at least 30 seedlings were laid on the agar plates, and digital pictures
were taken. Then, the hypocotyl lengths were measured using Image J software.

In vitro pull down assays. The constructs for expressing His-PIF1, His-PIF3,
GST-PIF4 and GST-PIF5 were described previously48. Full-length RGA fragment
was inserted into pMal-C2X vector to fuse with maltose-binding protein (MBP).
All constructs were expressed in E. coli strain BL21 under the induction of 1 mM
IPTG (isopropyl-b-D-thiogalactopyranoside). Two micrograms MBP or MBP–RGA
proteins were mixed with 2 mg His- or GST-tagged proteins in 500 ml binding buffer
(20 mM Tris–HCl, pH 7.5, 150 mM NaCl and 0.1% Nonidet P-40), and the mixture
was rotated at 4 �C for 2 h. The amylase agarose beads were washed with binding
buffer for three times and then added into the mixture. Then, the mixture was
rotated at 4 �C for another 2 h. After being washed for five times with binding
buffer, the MBP resin was boiled with protein loading buffer and analyzed by
immunoblots. Anti-His (Sigma-Aldrich, Cat. No: H1029-.2ML) at 1:1,000 dilution,
anti-GST (Sigma-Aldrich, Cat. No: G1160-.2ML) at 1:5,000 dilution and anti-MBP
(New England Biolabs, Cat. No: E8032S) at 1:5,000 dilution were used for the
western blots.

Bimolecular fluorescence complementation assay. The full-length cDNA of
RGA was amplified and inserted into the SpeI and BamHI sites of pSY736 (YFPN)
vector, resulting in plasmid YFPN-RGA. YFPC-PIF1, YFPC-PIF3, YFPC-PIF4 and
YFPC-PIF5 plasmids were described previously48. The plasmids were extracted and
concentrated to 2 mg ml� 1. The particle-mediated transformation using onion
epidermal cells was performed59. After 24 h of incubation, YFP signal was detected
using a Zeiss LSM 710 confocal microscope. The primers used for plasmid
construction were listed in Supplementary Table 2.

Chromatin immunoprecipitations assay. ChIP assays were performed as
described previously37. 35S:PIF3-Myc seedlings were grown for 4 days on the MS
medium containing 0.5 mM PAC or EtOH in darkness, and were collected and
treated with DMSO or 100mM MG132 for 4 h. RGAD17-HA seedlings were grown
for 4 days in the dark, and were collected and infiltrated with or without 10 mM
DEX for 24 h. The samples (2 g) were treated with 15 ml of 1% formaldehyde under
vacuum infiltration for 15 min, and then 1 ml 2 M glycine was added to stop
crosslinking for 5 min. For the ChIP analysis used 35S: PIF3-Myc seedlings, the
solubilized chromatin was immunoprecipitated by 30 ml EZview Red Anti-c-Myc
Affinity Gel (Sigma-Aldrich, Cat. No: E6654) at 4 �C for 5 h. For the ChIP analysis
using RGAD17-HA seedlings, the solubilized chromatin was mixed with 10 ml
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anti-HA antibody (Sigma) and incubated at 4 �C for 1 h. Then, 40 ml Dynabeads
Protein G (Life Technologies, Cat. No: 10003D) was added, and the sample was
incubated overnight at 4 �C. The coimmunoprecipitated DNA was recovered and
analyzed by quantitative PCR. All primers used in ChIP assays were listed in
Supplementary Table 2.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information files or are
available upon request from the corresponding authors.
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